• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algorithme Évolutionnaire à États pour l'Optimisation Difficile

Bercachi, Maroun 20 December 2010 (has links) (PDF)
Les Algorithmes Évolutionnaires (AEs) sont des méthodes de recherche inspirées par la théorie darwinienne de l'évolution, travaillant sur une population de solutions potentielles, par itération de phases de sélections et de variations aléatoires. La sélection d'une représentation, la définition des paramètres ou l'attribution de leurs propres valeurs ont une influence cruciale sur les performances de l'algorithme. Un choix qui ne s'accorde pas à la fonction de fitness peut rendre le problème plus difficile à résoudre. Trouver une configuration appropriée pour un AE est donc depuis longtemps un grand défi. Bien que les AEs soient reconnus comme des méthodes compétitives sur des problèmes de grande taille, ils sont sujets à un certain nombre de critiques tel celui du réglage/contrôle des paramètres. Par réglage, nous entendons l'approche qui consiste à trouver des valeurs satisfaisantes pour les paramètres avant l'exécution de l'algorithme. Dans cette thèse, nous fournissons des arguments qu'un jeu de paramètres constants durant l'exécution semble être inadéquat. Notre contribution au vaste domaine de l'optimisation concerne le réglage automatique des paramètres selon le problème traité. Dans la première partie, nous exposons la problématique du réglage/contrôle des paramètres ainsi que les principales heuristiques existantes. Dans la deuxième, nous proposons deux méthodes pour le contrôle dynamique des paramètres associés à la représentation des solutions. Dans la troisième, nous proposons l'algorithme évolutionnaire à états (SEA), une variante parallèle des AEs ; cette nouvelle approche gère simultanément plusieurs AEs afin de contrôler dynamiquement les paramètres au cours du processus d'optimisation. Dans la dernière partie, nous présentons une instanciation du SEA qui intègre différents taux de mutation afin d'adapter le meilleur taux à la recherche. Cette nouvelle instance est testée sur le problème du sac à dos multidimensionnel. Des résultats comparables ont été obtenus, ce qui prouve que le SEA est capable de contrôler dynamiquement le compromis exploration/exploitation.

Page generated in 0.0691 seconds