• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèle et commande structurés : application aux grandes structures spatiales flexibles / Modeling and structured control law : applying to flexible space structures

Guy, Nicolas 26 November 2013 (has links)
Dans cette thèse, les problématiques de la modélisation et du contrôle robuste de l’attitude des grandes structures spatiales flexibles sont considérées. Afin de satisfaire les performances de pointage requises dans les scénarios des futures missions spatiales, nous proposons d’optimiser directement une loi de commande d’ordre réduit sur un modèle de validation d’ordre élevé et des critères qui exploitent directement la structure du modèle. Ainsi, les travaux de cette thèse sont naturellement divisés en deux parties : une partie relative à l’obtention d’un modèle dynamique judicieusement structuré du véhicule spatial qui servira à l’étape de synthèse ; une seconde partie concernant l’obtention de la loi de commande.Ces travaux sont illustrés sur l’exemple académique du système masses-ressort, qui est la représentation la plus simple d’un système flexible à un degré de liberté. En complément, un cas d’étude sur un satellite géostationnaire est traité pour valider les approches sur un exemple plus réaliste d’une problématique industrielle. / In this thesis, modeling and robust attitude control problems of large flexible space structures are considered. To meet the required pointing performance of future space missions scenarios, we propose to directly optimize a reduced order control law on high order model validation and criteria that directly exploit the model structure. Thus, the work of this thesis is naturally divided into two parts : one part on obtaining a wisely structured dynamic model of the spacecraft to be used in the synthesis step, a second part about getting the law control. This work is illustrated on the example of the academic spring-masses system, which is the simplest representation of a one degree of freedom flexible system. In addition, a geostationary satellite study case is processed to validate developed approaches on a more realistic example of an industrial problem.
2

Hardware/Software prototyping of a miniaturized star tracker system for a nanosatellite platform / Prototypage matériel et logiciel d'un senseur stellaire embarqué pour les nanosatellites

Khorev, Andrey 13 December 2016 (has links)
Depuis les tous premiers jours de l'ère spatiale, les satellites artificiels ont été considérés comme un outil pour la résolution de problèmes scientifiques et pratiques, notamment dans l'astronomie, l'observation de la Terre et les télécommunications. Traditionnellement, les gros satellites artificiels, avec une masse allant de plusieurs centaines de kilogrammes jusqu'à plusieurs tonnes, ont été utilisés pour ces besoins. Un élément clef pour permettre le succès de ces missions spatiales est un contrôle précis de l'attitude du satellite. Afin d'assurer la haute précision de pointage, un système de contrôle d'attitude et d'orbite (SCAO) repose sur les données fournies par un instrument optoélectronique appelé un senseur stellaire (ou Star Tracker, ST). L'utilisation des étoiles éloignées comme points de repère permet la détermination de l'attitude du satellite avec une précision de l'ordre de la seconde d'arc. Beaucoup de travaux sur la miniaturisation des sous-systèmes des satellites artificiels ont été entrepris au court des vingt dernières années. Cela a permis à l'industrie et aux passionnés de développer et construire des satellites de quelques kilogrammes pouvant accomplir de véritables missions spatiales. Centaines de ces satellites appelés « nano-satellites » sont lancé chaque année et certains parmi eux peut être considéré comme un replacement des gros satellites. Cependant, dû à de grosses contraintes de masse et de volume définis par les standards na no-satellites, tel que lU-3U CubeSat Design Specification, l'intégration de senseur stellaire dans ces nano-satellites n'était jusqu'à présent pas possible, limitant l'application de ces plateformes. Dans ce travail, senseur stellaire est considéré comme un système composé par un module caméra et un module de traitement d'image. les solutions possibles pour chaque module sont analysées séparément dans un contexte de miniaturisation de ST par modélisation et simulation. Elles sont ensuite évaluées ensemble comme les prototypes fonctionnels dans un installation hardware-in-the-loop (Hll). Cette recherche aborde plusieurs problèmes liés à la miniaturisation d'optique de caméra et du capteur d'image à pixel actif (active pixel sensor, APS), tels que la sensibilité réduite à la lumière des étoiles et l'incertitude de position des centroïdes à cause de la distorsions et l'aberrations chromatique d'optique miniaturisée. L'évaluation dans l'installation Hll se concentre autour des performances du module de traitement et plus particulièrement sur les performances du logiciel ST dans le mode d'opération « perdu dans l'espace» ("Iost-in-space", LIS). Une contribution originale de cette recherche est un algorithme de reconnaissance d'étoiles (StarID) nommé « RING-O » développé et breveté par l'auteur. Par rapport aux autres algorithmes existants, RING-O peut facilement être adapté et ajusté à différentes caméras et plateformes de traitement. Des implémentations logicielles d'algorithme ont été effectuées sur deux prototypes, l'un basé sur smartphone et l'autre basé sur une plateforme Xilinx Zynq, afin de réaliser une analyse des goulets et d'extraire les performances du système. Optimisé pour les plateformes multi-coeurs, RING-O garantit les délais d'acquisition initiale d'attitude comparable et souvent plus petits que les délais d'acquisition déclaré par les autres développeurs de senseur stellaires européens. / From the early days of the space age, satellites were considered as a solution for many scientific and practical tasks, notably astronomy, Earth observation and telecommunication. Traditionally and to the present day, mostly large satellites with a mass from several hundred kilograms to several tons are used for these purposes. The key success factor of such space missions is a fine control of satellite’s attitude. To ensure high pointing accuracy, satellite’s attitude determination and control subsystem (ADCS) relies on precise three-dimensional attitude data provided by an opto-electronic instrument called star tracker (ST). The use of stars as reference objects allows to determine the satellite’s attitude in real time with an arc-second precision.A significant work on miniaturization of satellite subsystems carried out in the past twenty years, allows us today to build a complete satellite with a mass of only a few kilograms. An increasing number of successful nano- and picosatellite missions demonstrates constantly improving capabilities of modern miniaturized satellite platforms. However, until recently, integration of a star tracker into a nanosatellite was not possible because of a large size of the device and relatively high power consumption, and that limited possible applications of the nanosatellites. In attempt to change the situation, in the last five years about a dozen of miniature star tracker prototypes, suitable for nanosatellite platforms, were proposed by various developers. Some were successfully tested in space, yet most prototypes, including the tiniest ones, are still at the development stage.A modern star tracker is a system, that can be represented as two modules, a digital camera module and a processing module. Use of a compact camera lens and a small-size image sensor allows to significantly reduce overall mass and size of the device, and at the same time, may cause significant image quality deterioration, due to increased distortion, uncompensated spherical and chromatic aberration, lower signal-to-noise ratio (SNR) and overall lower light sensitivity of the camera module. Thus, embedded software of the processing module, responsible for pre-processing, star identification and attitude calculation, should take into account the limitations imposed by the miniaturization of the camera module. At the same time, hardware architecture of the processing module should have the capacity to perform necessary correction of the digital image in real time, and to ensure stability and expected performance of the star identification and attitude calculation routines.The goal of hardware and software prototyping of a miniature star tracker system, carried out in this work, is to evaluate various design solutions, that could be brought into the camera or into the processing module, in order to help the miniaturization of the system. Another goal is to analyze the impact of every hardware and software component on the overall performance of a miniaturized star tracker system. Among the list of star tracker characteristics, the initial attitude estimation time and the attitude output rate became the focus of the research. Current work addresses possible performance bottlenecks, that may appear on any step of star tracker operation, from capturing starlight to calculation of components of the attitude quaternion, and proposes an original solution to speed-up the star identification routine.
3

Modélisation numérique en vue de la conception d'un actionneur SCAO magnétohydrodynamique de précision / Numerical Modeling to Design an Accurate Magnetohydrodynamic Actuator AOCS

Mesurolle, Maël 30 November 2015 (has links)
Cette thèse s'inscrit dans le cadre d'un projet R&T CNES. Elle concerne l'étude d'un actionneur appelé roue d'inertie, qui fait partie intégrante de l'ensemble SCAO (Système de Contrôle d'Attitude et d'Orbite). Les nouvelles roues proposées, dites Magnétohydrodynamique (MHD) à Conduction, présentent un volant d'inertie fluidique sous forme d'un canal torique, dans lequel un métal liquide conducteur à fort potentiel inertiel est mis en mouvement sous l'effet d'un champ électromagnétique. Contrairement aux roues actuelles, elles n'ont pas de roulements ni d'arbre mécanique ce qui permet un gain en espace, un éloignement idéal de la masse inertielle, et une durée de vie théoriquement illimitée. Aussi, de par la viscosité naturelle du fluide, elles ne présentent pas de non-linéarité autour de la vitesse nulle ce qui évite une perte de précision sur le contrôle du couple de réaction, et donc du pointage du satellite. Le travail réalisé pendant la thèse porte sur l'appréhension des phénomènes MHD consistant en un couplage entre les lois de la Mécanique des Fluides et celles de l’Electromagnétisme, au travers de la loi d’Ohm généralisée. A partir d'hypothèses axisymétriques, et dans le cadre des milieux incompressibles et d’un écoulement laminaire, un modèle générale 3D a pu être établie. Puis une formulation 1D cylindrique a permis une résolution analytique, et une autre en 2D axisymétrique, par résolution numérique en différences fines, a permis l'amélioration de la précision des résultats. Ce modèle a permis de comprendre que deux approches étaient possibles pour la conception et plus particulièrement la commande de l'actionneur. Cette résolution, faisant l'objet du développement d'un code numérique, a d'abord porté sur les équations en régime permanent, puis en temporel, afin de caractériser l'actionneur du point de vue de ses deux modes de fonctionnement. La réalisation d’un prototype a permis de quantifier la validité de la modélisation d’un point de vue dynamique. / This thesis is part of a CNES R&T project. It's related to the study of an actuator called flywheel, which is part of AOCS (Attitude an Orbit Control System). The proposed new wheels, said Magnetohydrodynamic (MHD), are constituted by a fluid flywheel in the form of a ring channel, in which a conductive and high inertial potential liquid metal is driven through an electromagnetic field (Lorentz's force). Unlike current wheels, among others types DC brushless motor, MHD wheels, whose rotor is the fluid, have neither bearings nor mechanical shaft. This allows space saving, an ideal distance of the inertial mass, and a theoretically unlimited lifespan. Moreover, thanks to the natural viscosity of the fluid, they do not present a non-linearity around the zero speed which avoids a loss of precision in the reaction torque's control, and therefore the satellite pointing. The work for the thesis focuses on the apprehension of MHD phenomena. Indeed, MHD is a coupling between fluid mechanics' laws (Navier-Stokes, etc.) and Maxwell's equations, through the Lorentz force. From a number of assumptions, and as part of incompressible environment, a genral 3D model has been established. Then a 1D cylindrical formulation allowed an analytical resolution and another 2D axisymmetric one, by finite differences resolution, helped to improve results. This model allow us to understand that both approaches were possible for the design and especially the actuator control. The resolution, which is subjected to the development of a numerical code, first focused on the equations in steady state, then in dynamic, to characterize the actuator in terms of its two operating modes. The realization of a prototype has quantified the validity of the model from a dynamic point of view.
4

Synthèse de correcteurs robustes périodiques à mémoire et application au contrôle d'attitude de satellites par roues à réaction et magnéto-coupleurs

Tregouet, Jean-François 03 December 2012 (has links) (PDF)
Les travaux présentés dans ce mémoire constituent une contribution à la conception de méthodes systématiques pour l'analyse et la commande de systèmes périodiques et incertains. Une partie importante de cette thèse est également consacrée au contrôle d'attitude de satellites dont la dynamique se prête naturellement à une représentation sous forme de modèles périodiques soumis à des incertitudes. La première partie propose une présentation unifiée des résultats d'analyse et de synthèse de modèles périodiques et incertains à temps-discret via des méthodes basées sur des inégalités linéaires matricielles (LMI) et en s'appuyant sur la théorie de Lyapunov. Par la suite, l'accent est mis sur une nouvelle classe de correcteurs périodiques à mémoire pour lesquels l'entrée de commande est construite en utilisant l'historique des états du système conservés en mémoire. Des exemples numériques démontrent que ces nouveaux degrés de liberté permettent de repousser les limites des performances robustes. La seconde partie s'intéresse aux aspects de périodicité et de robutesse du contrôle d'attitude de satellite rencontrés notamment lors de l'utilisation des magnéto-coupleurs. Ces actionneurs s'appuient sur le champ géomagnétique variant périodiquement le long de l'orbite du satellite. Différentes stratégies de commande sont mises en oeuvre et comparées entre elles avec le souci constant de tenir compte des principales limitations des actionneurs. Cette démarche conduit à une nouvelle loi de commande périodique régulant le moment cinétique des roues à réactions sans perturber le contrôle d'attitude dont l'effort de commande est réparti sur l'ensemble des actionneurs.
5

Contrôle optimal et robuste de l'attitude d'un lanceur. Aspects théoriques et numériques / Optimal and robust attitude control of a launcher. Theoretical and numerical aspects

Antoine, Olivier 04 October 2018 (has links)
L'objectif premier de cette thèse est d'étudier certains aspects du contrôle d'attitude d'un corps rigide, afin d'optimiser la trajectoire d'un lanceur au cours de sa phase balistique. Nous y développons un cadre mathématique permettant de formuler ce problème comme un problème de contrôle optimal avec des contraintes intermédiaires sur l'état. En parallèle de l'étude théorique de ce problème, nous avons mené l'implémentation d'un logiciel d'optimisation basé sur la combinaison d'une méthode directe et d'un algorithme de point intérieur, permettant à l'utilisateur de traiter une phase balistique quelconque. Nous entendons par là qu'il est possible de spécifier un nombre quelconque de contraintes intermédiaires, correspondant à un nombre quelconque de largages de charges utiles. En outre, nous avons appliqué les méthodes dites indirectes, exploitant le principe du maximum de Pontryagin, à la résolution de ce problème de contrôle optimal. On cherche dans ce travail à trouver des trajectoires optimales du point de vue de la consommation en ergols, ce qui correspond à un coût L 1 . Réputé difficile numériquement, ce critère peut être atteint grâce à une méthode de continuation, en se servant d'un coût L 2 comme intermédiaire de calcul et en déformant progressivement ce problème L 2 . Nous verrons également d'autres exemples d'application des méthodes de continuation. Enfin, nous présenterons également un algorithme de contrôle robuste, permettant de rejoindre un état cible à partir d'un état perturbé, en suivant une trajectoire de référence tout en conservant la structure bang-bang des contrôles. La robustesse d'un contrôle peut également être améliorée par l'ajout de variations aiguilles, et un critère qualifiant la robustesse d'une trajectoire à partir des valeurs singulières d'une certaine application entrée-sortie est déduit. / The first objective of this work is to study some aspects of the attitude control problem of a rigid body, in order to optimize the trajectory of a launcher during a ballistic flight. We state this problem in a general mathematical setting, as an optimal control problem with intermediate constraints on the state. Meanwhile, we also implement an optimization software that relies on the combination of a direct method and of an interior-point algorithm to optimize any given ballistic flight, with any number of intermediate constraints, corresponding to any number of satellite separations. Besides, we applied the so-called indirect methods, exploiting Pontryagin maximum principle, to the resolution of this optimal control problem. In this work, optimal trajectories with respect to the consumption are looked after, which corresponds to a L 1 cost. Known to be numerically challenging, this criterion can be reached by performing a continuation procedure, starting from a L 2 cost, for which it is easier to provide a good initialization of the underlying optimization algorithm. We shall also study other examples of applications for continuation procedures. Eventually, we will present a robust control algorithm, allowing to reach a target point from a perturbed initial point, following a nominal trajectory while preserving its bang-bang structure. The robustness of a control can be improved introducing needle-like variations, and a criterion to measure the robustness of a trajectory is designed, involving the singular value decomposition of some end-point mapping.

Page generated in 0.071 seconds