Spelling suggestions: "subject:"contractility"" "subject:"contractililty""
1 |
Mechanism of cold shortening in pre-rigor muscleBuege, Dennis. January 1975 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1975. / Typescript. Vita. Bibliography: leaves 210-236.
|
2 |
Nitric oxide and cardiac functionAshley, Euan A. January 2002 (has links)
No description available.
|
3 |
Biaxial contractility, passive biomechanics, and murine cervical remodelingJanuary 2021 (has links)
archives@tulane.edu / Preterm birth (PTB) is a global health concern linked to lifelong health conditions in the mother and child. The etiology of PTB is multifactorial and exact pathways of PTB difficult to elucidate. Cervical insufficiency (CI) is a form of spontaneous PTB in which the cervix dilates in early- to mid-pregnancy without uterine contractions. CI remains difficult to diagnose and treat due to a lack of research into cervical function. During early-pregnancy the cervix must remain stiff to maintain the fetus within the uterus, however, in late-pregnancy the cervix must soften and dilate to allow for the passage of the fetus into the vaginal canal. To accomplish both roles, the cervical extracellular matrix (ECM) remodels during pregnancy. A disruption to the normal remodeling process such as accelerated degeneration of ECM proteins may lead to failure of cervical function. In addition to ECM, cervical smooth muscle cells (cSMCs) work to maintain cervical integrity and assist in physiologic processes such as fertilization and labor. Quantification of microstructural content and mechanical testing permits determination of relationships between ECM, cSMC, and cervical function. Past research quantified microstructural, mechanical, and contractile properties of the cervix; however, mechanical testing and contractility protocols were uniaxial. Uniaxial testing requires disruptive specimen preparation and investigates circumferential and axial properties independently. The cervix, however, is loaded multiaxially in vivo and is anisotropic. Towards this end, biaxial inflation-extension testing of the cervix overcomes these limitations by enabling simultaneous assessment of circumferential and longitudinal mechanical properties and contractility. Determining mechanical properties, contractility, and microstructure of the cervix in the nulliparous and parous state enables the development of computational models of cervical remodeling to better understand the etiology of CI. Therefore, this study sought to characterize cervical remodeling by determining the evolving biaxial mechanical properties, contractility, and microstructural composition of the nulliparous and parous murine cervix. / 1 / Cassandra Conway
|
4 |
Regulation of Cell DivisionZhou, Zhou January 2015 (has links)
Cell division is a universal cellular process responsible for the proliferation and differentiation of cells. After the chromosomes are faithfully segregated during mitosis, cells undergo cytokinesis, where one cell divides into two. Cytokinesis in many eukaryotes requires a structure known as the contractile ring, which contains actin, myosin and many other proteins assembled just beneath the plasma membrane. In this thesis, I present my studies on the function and organization of this ring. I used the powerful genetically tractable model organism the fission yeast Schizosaccharomyces pombe to study these processes in cytokinesis. First, I showed that one function of the cytokinetic ring is to regulate the assembly of the septum cell wall in a curvature dependent manner, suggesting a mechanosensitive mechanism. Second, I analyzed the substructure organization of the proteins within the ring, showing that ring proteins are arranged in clusters and in different layers. Finally, in a collaborative project, I studied the arrangement of chromosomes within the nucleus, and identified a protein required for linking centromeres to the spindle pole body at the nuclear envelope. In general, my thesis provides new insights into the spatial mechanisms of cytokinesis and chromosome organization.
|
5 |
The effect of myocardin and Smad3 overexpression in ventricular myofibroblasts: cellular contractility and collagen productionBedosky, Kristen Marie 14 April 2008 (has links)
The incidence of cardiovascular disease has reached epidemic proportions in North America. Specifically, myocardial infarctions (MI) are a major contributor to heart failure which greatly influences morbidity and mortality rates in developed nations. In the post-MI heart, cardiac fibroblasts migrate to the damaged area, convert to myofibroblasts and contribute to infarct scar contraction. As well, cardiac myofibroblasts are hypersynthetic for matrix components eg, collagen, and de novo production of fibrillar collagens lessens the chance for acute scar rupture. TGF-1 is important in the initiation of cardiac healing and fibrosis. Canonical TGF-1 signaling occurs with the activation of receptor-operated Smads (R-Smads) including Smad3. The current study addresses the question of whether Smad3 and/or myocardin influence myofibroblast contractility. We believe that myocardin is a Smad3 binding partner and cofactor and thus contributes to Smad associated healing and fibrotic events in the heart. In mesenchyme-derived cells, myocardin exists as a nuclear protein and is a cardiac and smooth muscle specific transcriptional coactivator of serum response factor (SRF). This transcription factor has been shown to bind to Smad3 in COS-7 cells (a green monkey kidney fibroblast-like cell line) and we suggest that it may contribute to fibroproliferative events. Precisely how Smad3/myocardin facilitates post-MI wound healing and/or contributes to inappropriate post-MI fibrosis is unknown.
Very little work has been done to address myocardin expression in cardiac ventricular myofibroblasts. While a number of previous studies address TGF-β/Smad signaling in cardiac myofibroblasts, none have addressed the effects of overexpressed Smad3 on cellular contractility and collagen secretion. As Smad3 and its endogenous inhibitor Smad eg, I-Smad7, contribute significantly to TGF-β signaling in myofibroblasts, we rationalize that they must be important in the regulation of many fibroproliferative processes. Our goals were first to measure/determine myocardin expression in primary ventricular myofibroblasts; second, to explore a putative interaction between Smad3 and myocardin; third to examine a possible link between TGF-β1 stimulation, myocardin and Smad3. Finally, we sought to examine the effect of overexpressed Smad3, Smad7 and myocardin on contractility and collagen production. These experiments were conducted by using RT-PCR, co-immunoprecipitation, adenoviral overexpression of Smad3, Smad7 and myocardin, Western blot analysis, collagen gel deformation assays (contractility studies) and finally, Pro-collagen 1 N-terminal Peptide (P1NP) secretion as a measure of mature collagen production.
We document the novel expression of myocardin in ventricular myofibroblasts and provide evidence that myocardin may serve as a Smad3 cofactor in cardiac myofibroblasts. Further, myocardin overexpression is linked to increased contractility in myofibroblasts compared to LacZ infected controls, and that TGF-β1 acutely stimulated myocardin expression followed by a dramatic reduction 1 hour thereafter. Overexpressed Smad3 alone led to increased contractility in primary ventricular myofibroblasts. Thus the effect of increasing myocardin expression had a comparable effect to that of increased Smad3 alone with this endpoint. Finally, overexpression of both Smad3 and myocardin in the presence of TGF-β1 led to an additive stimulation of contractility in cells when compared to the effect of TGF-β1 stimulation alone. Overexpressed Smad7 alone was associated with decreased secretion of type I collagen when compared to the control; when cells overexpressing Smad7 are stimulated with TGF-β1, collagen secretion is dramatically reduced when compared to cells treated with TGF-β1.
In an addition series of experiments we addressed reverse mode NCX1 function as a means of Ca2+ entry to the cytosol of myofibroblasts upon their excitation. We have previously shown the stimulatory effect of TGF-β1 on myofibroblast contractility, and we now report that overexpression of Smad3 alone led to increased mRNA expression of NCX1. Thus it is possible that TGF-β1 signaling via Smad3 may influence Ca2+ movements and thus contractile performance in ventricular myofibroblasts. / May 2008
|
6 |
Eccentric contraction-induced injury in mammalian skeletal muscleYeung, Wai, Ella., 楊慧. January 2003 (has links)
published_or_final_version / abstract / toc / Physiology / Doctoral / Doctor of Philosophy
|
7 |
The effect of myocardin and Smad3 overexpression in ventricular myofibroblasts: cellular contractility and collagen productionBedosky, Kristen Marie 14 April 2008 (has links)
The incidence of cardiovascular disease has reached epidemic proportions in North America. Specifically, myocardial infarctions (MI) are a major contributor to heart failure which greatly influences morbidity and mortality rates in developed nations. In the post-MI heart, cardiac fibroblasts migrate to the damaged area, convert to myofibroblasts and contribute to infarct scar contraction. As well, cardiac myofibroblasts are hypersynthetic for matrix components eg, collagen, and de novo production of fibrillar collagens lessens the chance for acute scar rupture. TGF-1 is important in the initiation of cardiac healing and fibrosis. Canonical TGF-1 signaling occurs with the activation of receptor-operated Smads (R-Smads) including Smad3. The current study addresses the question of whether Smad3 and/or myocardin influence myofibroblast contractility. We believe that myocardin is a Smad3 binding partner and cofactor and thus contributes to Smad associated healing and fibrotic events in the heart. In mesenchyme-derived cells, myocardin exists as a nuclear protein and is a cardiac and smooth muscle specific transcriptional coactivator of serum response factor (SRF). This transcription factor has been shown to bind to Smad3 in COS-7 cells (a green monkey kidney fibroblast-like cell line) and we suggest that it may contribute to fibroproliferative events. Precisely how Smad3/myocardin facilitates post-MI wound healing and/or contributes to inappropriate post-MI fibrosis is unknown.
Very little work has been done to address myocardin expression in cardiac ventricular myofibroblasts. While a number of previous studies address TGF-β/Smad signaling in cardiac myofibroblasts, none have addressed the effects of overexpressed Smad3 on cellular contractility and collagen secretion. As Smad3 and its endogenous inhibitor Smad eg, I-Smad7, contribute significantly to TGF-β signaling in myofibroblasts, we rationalize that they must be important in the regulation of many fibroproliferative processes. Our goals were first to measure/determine myocardin expression in primary ventricular myofibroblasts; second, to explore a putative interaction between Smad3 and myocardin; third to examine a possible link between TGF-β1 stimulation, myocardin and Smad3. Finally, we sought to examine the effect of overexpressed Smad3, Smad7 and myocardin on contractility and collagen production. These experiments were conducted by using RT-PCR, co-immunoprecipitation, adenoviral overexpression of Smad3, Smad7 and myocardin, Western blot analysis, collagen gel deformation assays (contractility studies) and finally, Pro-collagen 1 N-terminal Peptide (P1NP) secretion as a measure of mature collagen production.
We document the novel expression of myocardin in ventricular myofibroblasts and provide evidence that myocardin may serve as a Smad3 cofactor in cardiac myofibroblasts. Further, myocardin overexpression is linked to increased contractility in myofibroblasts compared to LacZ infected controls, and that TGF-β1 acutely stimulated myocardin expression followed by a dramatic reduction 1 hour thereafter. Overexpressed Smad3 alone led to increased contractility in primary ventricular myofibroblasts. Thus the effect of increasing myocardin expression had a comparable effect to that of increased Smad3 alone with this endpoint. Finally, overexpression of both Smad3 and myocardin in the presence of TGF-β1 led to an additive stimulation of contractility in cells when compared to the effect of TGF-β1 stimulation alone. Overexpressed Smad7 alone was associated with decreased secretion of type I collagen when compared to the control; when cells overexpressing Smad7 are stimulated with TGF-β1, collagen secretion is dramatically reduced when compared to cells treated with TGF-β1.
In an addition series of experiments we addressed reverse mode NCX1 function as a means of Ca2+ entry to the cytosol of myofibroblasts upon their excitation. We have previously shown the stimulatory effect of TGF-β1 on myofibroblast contractility, and we now report that overexpression of Smad3 alone led to increased mRNA expression of NCX1. Thus it is possible that TGF-β1 signaling via Smad3 may influence Ca2+ movements and thus contractile performance in ventricular myofibroblasts.
|
8 |
The effect of myocardin and Smad3 overexpression in ventricular myofibroblasts: cellular contractility and collagen productionBedosky, Kristen Marie 14 April 2008 (has links)
The incidence of cardiovascular disease has reached epidemic proportions in North America. Specifically, myocardial infarctions (MI) are a major contributor to heart failure which greatly influences morbidity and mortality rates in developed nations. In the post-MI heart, cardiac fibroblasts migrate to the damaged area, convert to myofibroblasts and contribute to infarct scar contraction. As well, cardiac myofibroblasts are hypersynthetic for matrix components eg, collagen, and de novo production of fibrillar collagens lessens the chance for acute scar rupture. TGF-1 is important in the initiation of cardiac healing and fibrosis. Canonical TGF-1 signaling occurs with the activation of receptor-operated Smads (R-Smads) including Smad3. The current study addresses the question of whether Smad3 and/or myocardin influence myofibroblast contractility. We believe that myocardin is a Smad3 binding partner and cofactor and thus contributes to Smad associated healing and fibrotic events in the heart. In mesenchyme-derived cells, myocardin exists as a nuclear protein and is a cardiac and smooth muscle specific transcriptional coactivator of serum response factor (SRF). This transcription factor has been shown to bind to Smad3 in COS-7 cells (a green monkey kidney fibroblast-like cell line) and we suggest that it may contribute to fibroproliferative events. Precisely how Smad3/myocardin facilitates post-MI wound healing and/or contributes to inappropriate post-MI fibrosis is unknown.
Very little work has been done to address myocardin expression in cardiac ventricular myofibroblasts. While a number of previous studies address TGF-β/Smad signaling in cardiac myofibroblasts, none have addressed the effects of overexpressed Smad3 on cellular contractility and collagen secretion. As Smad3 and its endogenous inhibitor Smad eg, I-Smad7, contribute significantly to TGF-β signaling in myofibroblasts, we rationalize that they must be important in the regulation of many fibroproliferative processes. Our goals were first to measure/determine myocardin expression in primary ventricular myofibroblasts; second, to explore a putative interaction between Smad3 and myocardin; third to examine a possible link between TGF-β1 stimulation, myocardin and Smad3. Finally, we sought to examine the effect of overexpressed Smad3, Smad7 and myocardin on contractility and collagen production. These experiments were conducted by using RT-PCR, co-immunoprecipitation, adenoviral overexpression of Smad3, Smad7 and myocardin, Western blot analysis, collagen gel deformation assays (contractility studies) and finally, Pro-collagen 1 N-terminal Peptide (P1NP) secretion as a measure of mature collagen production.
We document the novel expression of myocardin in ventricular myofibroblasts and provide evidence that myocardin may serve as a Smad3 cofactor in cardiac myofibroblasts. Further, myocardin overexpression is linked to increased contractility in myofibroblasts compared to LacZ infected controls, and that TGF-β1 acutely stimulated myocardin expression followed by a dramatic reduction 1 hour thereafter. Overexpressed Smad3 alone led to increased contractility in primary ventricular myofibroblasts. Thus the effect of increasing myocardin expression had a comparable effect to that of increased Smad3 alone with this endpoint. Finally, overexpression of both Smad3 and myocardin in the presence of TGF-β1 led to an additive stimulation of contractility in cells when compared to the effect of TGF-β1 stimulation alone. Overexpressed Smad7 alone was associated with decreased secretion of type I collagen when compared to the control; when cells overexpressing Smad7 are stimulated with TGF-β1, collagen secretion is dramatically reduced when compared to cells treated with TGF-β1.
In an addition series of experiments we addressed reverse mode NCX1 function as a means of Ca2+ entry to the cytosol of myofibroblasts upon their excitation. We have previously shown the stimulatory effect of TGF-β1 on myofibroblast contractility, and we now report that overexpression of Smad3 alone led to increased mRNA expression of NCX1. Thus it is possible that TGF-β1 signaling via Smad3 may influence Ca2+ movements and thus contractile performance in ventricular myofibroblasts.
|
9 |
Biophysical Influence of Nanofiber Networks to Direct Pericyte Aggregation into SpheroidsSharma, Sharan 25 July 2023 (has links)
Multicellular spheroids have emerged as a promising tool for drug delivery, cancer therapy, and tissue engineering. Compared to 2D monolayers, spheroids provide a more realistic representation of the 3D cellular environment, enabling better understanding of the signaling cascades and growth factors involved in vivo. The formation of in vitro spheroids involves the aggregation of several cells that proliferate to grow into larger spheroids. Biophysical cues provide crucial information for the cells to assemble into 3D structures. We used suspended fiber networks to demonstrate a new way to form and spatially pattern spheroids comprised of human pericytes. We show that fiber architecture (aligned vs. crosshatched), diameter (200, 500, and 800 nm), and contractility influence spheroids in their spontaneous formation, growth, and maintenance, and report a dynamic trade of cells between adjacent spheroids through remodeled fiber networks. We found that aligned fiber networks promoted spheroid formation independent of fiber diameter, while large-diameter crosshatched networks abrogated spheroid formation, promoting growth of 2D monolayers. Thus, a mixture of diameters and architectures allowed for spatial patterning of spheroids and monolayers within a single system. We further quantified various dynamic interactions and describe the forces involved during spheroid formation, cell efflux from spheroids, and show the loss and recovery of spheroid forces with pharmacological perturbation of Rho-associated protein kinase (ROCK). Thus, we develop new insights on the dynamics of spheroids using suspended fiber networks of varying diameters and architectures, with the potential to connect matrix biology with developmental, disease, and regenerative biology. / Master of Science / In recent years, studies involving multicellular spherical aggregates or 'spheroids' have gained popularity since they capture the 3D cellular environments seen within the body more realistically when compared to 2D cell culture systems (such as monolayers) traditionally used for biological studies. These spheroids resemble organs and tissues in terms of their structure and function better and are increasingly being studied for an array of applications such as drug delivery, cancer therapy, as implants and in tissue regeneration and tissue engineering. The cellular microenvironment consists of fibrous proteins of varying diameter arranged in various geometric patterns, which can influence the growth and culture of spheroids. Here, we use our Spinneret-Based Tunable Engineered Parameters (STEP) technique to fabricate fibrous networks with precise control over fiber diameter and architecture and study how biophysical cues can influence the formation and culture of spheroids. Using aortic pericytes, we show that fiber architecture (aligned vs. crosshatched) and diameter (200, 500, and 800 nm) can control how pericytes aggregate into either 2D monolayers or 3D spheroids. We study the effect of each of these parameters to show that stiffer, denser fibers are robust networks which the cells refrain from remodeling, and thus lead to monolayers while more compliant and sparser networks are easily remodeled to promote spheroid formation. Thus, we spatially pattern a mixture of 3D spheroids and 2D monolayers in a single system by varying the parameters at different regions. We quantify various interactions such as spheroid formation, spheroid merging, spheroid migration, cell efflux from spheroids and the dynamic contractile forces exerted on the matrix by spheroids during these interactions. We also show that contractility has a major role in spheroid formation and to maintain their structure and look at the changes in the gene expressions associated with contractility during the formation and growth of spheroids. Thus, we develop new knowledge in controlling the growth of pericytes into 2D and 3D structures and show that our fiber networks can be an essential platform for studying spheroids.
|
10 |
Aerobic exercise training and indices of myocardial contractility in swine /Filusch, Elaine Marie January 1982 (has links)
No description available.
|
Page generated in 0.0584 seconds