Spelling suggestions: "subject:"contraintes naturelles"" "subject:"èontraintes naturelles""
1 |
Etude de la dynamique des séracs du Géant ( Massif du Mont Blanc)Reynaud, Louis 04 April 1973 (has links) (PDF)
Pour appliquer aux glaciers les lois de la mécanique des milieux continus, on considère une surface et un lit lissés à l'échelle de quelques dizaines de mètres. Lorsque la surface d'un glacier ainsi lissée ne peut quand même pas être assimilée à un plan, le calcul des contraintes en profondeur doit faire intervenir les variations de pente de la surface lissée et les variations de la vitesse superficielle Ce calcul a été fait par Lliboutry (1969), dans le cas où les lignes de niveau de la surface restent parallèles entre elles et perpendiculaires à l'axe d'écoulement, en approchant les vitesses et les contraintes à la surface dans une partie limitée du glacier par des polynômes. En appliquant à la chute de glace des séracs du Géant les expressions obtenues pour les contraintes, un premier calcul peu précis le conduit à un frottement contre le lit à peu près proportionnel à la pression normale, cela en quatre points. Afin de préciser ces résultats qui utilisaient quelques vitesses superficielles seulement,. mesurées en 1960 et une restitution de photographies aériennes prises en 1958, nous avons fait des mesures de vitesses et un relevé de la surface, par photogrammétrie terrestre . Ce travail sur la chute de séracs du Glacier du Géant, fait partie d'une étude en cours, plus vaste, concernant toute la dynamique de la Mer de Glace .
|
2 |
Mesure et modélisation des contraintes naturelles dans un massif rocheux alpin. Effets de la topographie, de l'anisotropie et des contraintes tectoniques; application au projet de tunnel Maurienne-Ambin.Mayeur, Bertrand 20 October 1999 (has links) (PDF)
Le projet de tunnel de base Maurienne-Arnbin, qui traversera les Alpes sur plus de 50 km de longueur et sous un 'recouvrement de terrain atteignant au maximum 2500 m, pose le problème de la prévision des états de contraintes naturelles dans les massifs rocheux ; le comportement du rocher pendant l'excavation aussi bien que la stabilité de l'ouvrage en dépendent. Pour étudier cette question complexe, nous avons eu recours à plusieurs approches complémentaires. Il s'agit tout d'abord d'une étude en laboratoire du comportement mécanique du gneiss d'Ambin, visant en particulier à quantifier précisément son anisotropie élastique ; c'est dans cette roche que le recouvrement sera maximal, et donc la prévision de contraintes particulièrement importante. Nous avons ensuite interprété une série de mesures de contraintes in-situ réalisées dans quinze forages de reconnaissance à la cote du futur tunnel, essentiellement par la méthode des tests hydrauliques sur fractures préexistantes (méthode HTPF). Nous avons enfin évalué, avec l'aide de la modélisation numérique, le poids relatif des différents paramètres influant sur l'état de contraintes naturel : la topographie, l'anisotropie élastique des roches et la tectonique. Il ressort de cette étude que dans le secteur concerné par le tunnel Maurienne-Arnbin, la tectonique combinée à la topographie semble être le facteur prédominant, qui explique une bonne partie des observations de terrain. L'anisotropie des roches comme le gneiss d'Arnbin, dont le rapport des modules élastiques est proche de 1.5 , n'est qu'un paramètre de second ordre, mais il influe tout de même sur les valeurs et les orientations des contraintes principales.
|
Page generated in 0.1099 seconds