• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 14
  • 14
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multivariable constrained Model Predictive Control

Heise, Sharon Ann January 1994 (has links)
No description available.
2

Robustness of multivariable feedback systems : analysis and optimal design

Foo, Yung Kuan January 1985 (has links)
The robustness of the stability property of multivariable feedback control systems with respect to model uncertainty is studied and discussed. By introducing a topological notion of arcwise connectivity, existing and new robust stability tests are combined and unified under a common framework. The new switching-type robust stability test is easy to apply, and does not require the nominal and perturbed plants to share the same number of closed right half-plane poles, or zeros, or both. It also highlights the importance of both the sensitivity matrix and the complementary sensitivity matrix in determining the robust stability of a feedback system. More specifically, it is shown that at those frequencies where there is a possibility of an uncertain pole crossing the jw-axis, robust stability is "maximized" by minimizing the maximum singular value of the sensitivity matrix. At frequencies where there is a likelihood of uncertain zeros crossing the imaginary axis, it is then desirable to minimize the maximum singular value of the complementary sensitivity matrix. A robustness optimization problem is posed as a non-square H<sup>∞</sup>-optimization problem. All solutions to the optimization problem are derived, and parameterized by the solutions to an "equivalent" two-parameter interpolation problem. Motivated by improvements in disturbance rejection and robust stability, additional optimization objectives are introduced to arrive at the 'best' solution.
3

Development of novel operational stability control systems for embedded high voltage DC links

Khaleghi Kerahroudi, Shadi January 2015 (has links)
In order to achieve the ambitious decarbonisation targets of the UK government, up to 30GW of wind generation could be connected to the GB transmission system by 2020. The challenges imposed when incorporating this volume of renewable energy are significant, introducing new technical challenges for National Grid as the system operator for the Great Britain transmission system. The majority of this new renewable generation will be connecting in Scotland and offshore in the UK as a whole. This results in greater uncertainty in the system from significant changes to the direction and volume of power flows across the network. In addition this implies a higher power transfer capacity requirement on the AC transmission lines, which are currently stability-limited, connecting SPT (Scottish Power Transmission) and National Grid networks. The required power transfer capability increases every year because of the large-scale increase in wind generation. Therefore, there is insufficient transmission capacity in the existing network to accommodate the increasing power transfer without constraining output of some generation plants. A range of new state of art technologies such as embedded HVDC link and Thyristor Controlled Series Compensation (TCSC) are planned to be added to the GB system in order to provide additional capacity and consequently facilitate the integration of large-scale renewable generation. It is, therefore essential that National Grid explores new ways of operating the transmission network and new devices to gain additional benefit from the HVDC link and the TCSC capabilities with regard to the system stability enhancement. This thesis investigates the effectiveness of the HVDC link and the TCSC with a view to system stability enhancement. A hierarchical stability control system to enhance the stability limit and achieve the best transient and dynamic performance using the HVDC link and the TCSCs as actuators in the feedback control system is proposed. In addition, a stability control system, using a robust and stabilising Sample Regulator multivariable control design method , to guarantee the system robustness and stability is proposed and designed. The performance and capability of the designed controller in co-ordinated control of the forthcoming power flow control devices are demonstrated on benchmark networks as well as full dynamic models of the GB transmission system using various study cases. Finally, the effectiveness of the West Coast HVDC link in improving the inter-area oscillation damping is presented using the developed model of the future GB transmission system.
4

Operation, control and stability analysis of multi-terminal VSC-HVDC systems

Wang, Wenyuan January 2015 (has links)
Voltage source converter high voltage direct current (VSC-HVDC) technology has become increasingly cost-effective and technically feasible in recent years. It is likely to play a vital role in integrating remotely-located renewable generation and reinforcing existing power systems. Multi-terminal VSC-HVDC (MTDC) systems, with superior reliability, redundancy and flexibility over the conventional point-to-point HVDC, have attracted a great deal of attention globally. MTDC however remains an area where little standardisation has taken place, and a series of challenges need to be fully understood and tackled before moving towards more complex DC grids. This thesis investigates modelling, control and stability of MTDC systems. DC voltage, which indicates power balance and stability of DC systems, is of paramount importance in MTDC control. Further investigation is required to understand the dynamic and steady-state behaviours of various DC voltage and active power control schemes in previous literature. This work provides a detailed comparative study of modelling and control methodologies of MTDC systems, with a key focus on the control of grid side converters and DC voltage coordination. A generalised algorithm is proposed to enable MTDC power flow calculations when complex DC voltage control characteristics are employed. Analysis based upon linearised power flow equations and equivalent circuit of droop control is performed to provide further intuitive understanding of the steady-state behaviours of MTDC systems. Information of key constraints on the stability and robustness of MTDC control systems has been limited. A main focus of this thesis is to examine these potential stability limitations and to increase the understanding of MTDC dynamics. In order to perform comprehensive open-loop and closed-loop stability studies, a systematic procedure is developed for mathematical modelling of MTDC systems. The resulting analytical models and frequency domain tools are employed in this thesis to assess the stability, dynamic performance and robustness of active power and DC voltage control of VSC-HVDC. Limitations imposed by weak AC systems, DC system parameters, converter operating point, controller structure, and controller bandwidth on the closed-loop MTDC stability are identified and investigated in detail. Large DC reactors, which are required by DC breaker systems, are identified in this research to have detrimental effects on the controllability, stability and robustness of MTDC voltage control. This could impose a serious challenge for existing control designs. A DC voltage damping controller is proposed to cope with the transient performance issues caused by the DC reactors. Furthermore, two active stabilising controllers are developed to enhance the controllability and robust stability of DC voltage control in a DC grid.
5

Parameter self-tuning in internet congestion control

Chen, Wu January 2010 (has links)
Active Queue Management (AQM) aims to achieve high link utilization, low queuing delay and low loss rate in routers. However, it is difficult to adapt AQM parameters to constantly provide desirable transient and steady-state performance under highly dynamic network scenarios. They need to be a trade-off made between queuing delay and utilization. The queue size would become unstable when round-trip time or link capacity increases, or would be unnecessarily large when round-trip time or link capacity decreases. Effective ways of adapting AQM parameters to obtain good performance have remained a critical unsolved problem during the last fifteen years. This thesis firstly investigates existing AQM algorithms and their performance. Based on a previously developed dynamic model of TCP behaviour and a linear feedback model of TCP/RED, Auto-Parameterization RED (AP-RED) is proposed which unveils the mechanism of adapting RED parameters according to measurable network conditions. Another algorithm of Statistical Tuning RED (ST-RED) is developed for systematically tuning four key RED parameters to control the local stability in response to the detected change in the variance of the queue size. Under variable network scenarios like round-trip time, link capacity and traffic load, no manual parameter configuration is needed. The proposed ST-RED can adjust corresponding parameters rapidly to maintain stable performance and keep queuing delay as low as possible. Thus the sensitivity of RED's performance to different network scenarios is removed. This Statistical Tuning algorithm can be applied to a PI controller for AQM and a Statistical Tuning PI (ST-PI) controller is also developed. The implementation of ST-RED and ST-PI is relatively straightforward. Simulation results demonstrate the feasibility of ST-RED and ST-PI and their capabilities to provide desirable transient and steady-state performance under extensively varying network conditions.
6

Practical robustness measures in multivariable control system analysis

Lehtomaki, Norman A. (Norman August) January 1981 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Norman August Lehtomaki. / Ph.D.
7

Stability of Input/Output Dynamical Systems on Metric Spaces: Theory and Applications

Gonzalez Villasanti, Hugo Jose 04 September 2019 (has links)
No description available.
8

A Computational and Design Characterization for the Flowfield behind a C-130 during an Unmanned Aerial Vehicle Docking

Robertson, Cole D. January 2019 (has links)
No description available.
9

Novel morphologies on flying robots: design for field application / Novas morfologias para robôs aéreos: projeto e controle para aplicações de campo

Sampaio, Rafael Coronel Bueno 27 March 2015 (has links)
Energetic limitations in low scale Unmanned Aerial Vehicles (UAVs) sometimes turns outdoor field applications impractical, which restricts the realization of several tasks that could potentially be improved or benefited from its sounding characteristics. Depending on the mission, Mini Aerial Vehicles (MAVs) energetic resources may be mostly wasted during the round trip from launching base and target point around which a given mission must be accomplished. In this sense, the initial deployment problem becomes prominent, raising new opportunities on how aerial robots may be launched/deployed. This work presents a novel perspective in morphological adaptations for aerial robotics that may potentially minimize initial deployment problem issues. From that perspective, we present three novel morphologies. First refers to a hybrid fixed-wing/quadrotor aiming in-flight launching possibilities. Still looking at in-flight launching, second MAV regards to a new morphology for a quadrotor whose center of gravity is shifted in order to improve passive static stability. Third one relates to a hybrid MAV that combines a watercraft and a quadrotor. The aircraft may navigate on water with low energetic cost through a specially designed structure. It also presents static stability in air and over the ground. We present all details concerning new concepts, development, analysis, design and flight simulation for all three novel platforms. A concise and robust validation of stability control is firstly performed with the &#169;VICON vision system. Finally, on-the-field evaluation for all three morphologies are extensively carried out, presenting optimistic experimental results of our findings. / As limitações energéticas em robótica aérea de campo muitas vezes levam à sua não utilização em tarefas que poderiam se beneficiar substancialmente de suas inúmeras vantagens. Dependendo da complexidade da missão, os recursos energéticos podem ser despendidos prematuramente ainda durante o traslado ao ponto de interesse. Nesse contexto, se evidencia o problema do lançamento inicial de robôs, o que faz surgir novas possibilidades para o desenvolvimento de novas maneiras de lançá-los. Este trabalho propõe uma nova perspectiva para adaptações morfológicas para robótica aérea as quais podem significativamente minimizar os efeitos das limitações energéticas. Sob essa ótica, são propostas três novas morfologias. A primeira consiste de um robô aéreo híbrido asa fixa/quadrotor visando a possibilidade do lançamento em voo. A segunda consiste de uma aeronave de asa rotativa na configuração quadrotora morfologicamente adaptada para reposicionamento do seu centro de gravidade. O aumento da estabilidade estática passiva da aeronave também visa o seu lançamento durante o voo. A terceira se refere a um veículo aéreo híbrido que combina uma estrutura naval e um quadrotor, capaz de navegar em cenários aquáticos com baixo custo energético. O desenho mecânico resultante permite sua operação no ponto ótimo tanto para a navegação aérea quanto aquática, oferecendo estabilidade estática em todos os cenários (terra, ar e água). São apresentados todos os detalhes de conceito, concepção, análise, projeto e simulação em voo das três novas plataformas. Uma validação robusta dos sistemas de controle e estabilidade é realizada por sistema de visão ©VICON. Por fim, ensaios em campo são realizados, apresentando resultados experimentais otimistas para a aplicação das três novas morfologias.
10

Novel morphologies on flying robots: design for field application / Novas morfologias para robôs aéreos: projeto e controle para aplicações de campo

Rafael Coronel Bueno Sampaio 27 March 2015 (has links)
Energetic limitations in low scale Unmanned Aerial Vehicles (UAVs) sometimes turns outdoor field applications impractical, which restricts the realization of several tasks that could potentially be improved or benefited from its sounding characteristics. Depending on the mission, Mini Aerial Vehicles (MAVs) energetic resources may be mostly wasted during the round trip from launching base and target point around which a given mission must be accomplished. In this sense, the initial deployment problem becomes prominent, raising new opportunities on how aerial robots may be launched/deployed. This work presents a novel perspective in morphological adaptations for aerial robotics that may potentially minimize initial deployment problem issues. From that perspective, we present three novel morphologies. First refers to a hybrid fixed-wing/quadrotor aiming in-flight launching possibilities. Still looking at in-flight launching, second MAV regards to a new morphology for a quadrotor whose center of gravity is shifted in order to improve passive static stability. Third one relates to a hybrid MAV that combines a watercraft and a quadrotor. The aircraft may navigate on water with low energetic cost through a specially designed structure. It also presents static stability in air and over the ground. We present all details concerning new concepts, development, analysis, design and flight simulation for all three novel platforms. A concise and robust validation of stability control is firstly performed with the &#169;VICON vision system. Finally, on-the-field evaluation for all three morphologies are extensively carried out, presenting optimistic experimental results of our findings. / As limitações energéticas em robótica aérea de campo muitas vezes levam à sua não utilização em tarefas que poderiam se beneficiar substancialmente de suas inúmeras vantagens. Dependendo da complexidade da missão, os recursos energéticos podem ser despendidos prematuramente ainda durante o traslado ao ponto de interesse. Nesse contexto, se evidencia o problema do lançamento inicial de robôs, o que faz surgir novas possibilidades para o desenvolvimento de novas maneiras de lançá-los. Este trabalho propõe uma nova perspectiva para adaptações morfológicas para robótica aérea as quais podem significativamente minimizar os efeitos das limitações energéticas. Sob essa ótica, são propostas três novas morfologias. A primeira consiste de um robô aéreo híbrido asa fixa/quadrotor visando a possibilidade do lançamento em voo. A segunda consiste de uma aeronave de asa rotativa na configuração quadrotora morfologicamente adaptada para reposicionamento do seu centro de gravidade. O aumento da estabilidade estática passiva da aeronave também visa o seu lançamento durante o voo. A terceira se refere a um veículo aéreo híbrido que combina uma estrutura naval e um quadrotor, capaz de navegar em cenários aquáticos com baixo custo energético. O desenho mecânico resultante permite sua operação no ponto ótimo tanto para a navegação aérea quanto aquática, oferecendo estabilidade estática em todos os cenários (terra, ar e água). São apresentados todos os detalhes de conceito, concepção, análise, projeto e simulação em voo das três novas plataformas. Uma validação robusta dos sistemas de controle e estabilidade é realizada por sistema de visão ©VICON. Por fim, ensaios em campo são realizados, apresentando resultados experimentais otimistas para a aplicação das três novas morfologias.

Page generated in 0.08 seconds