• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Power control and resource allocation for QoS-constrained wireless networks

Feng, Ziqiang January 2017 (has links)
Developments such as machine-to-machine communications and multimedia services are placing growing demands on high-speed reliable transmissions and limited wireless spectrum resources. Although multiple-input multiple-output (MIMO) systems have shown the ability to provide reliable transmissions in fading channels, it is not practical for single-antenna devices to support MIMO system due to cost and hardware limitations. Cooperative communication allows single-antenna devices to share their spectrum resources and form a virtual MIMO system where their quality of service (QoS) may be improved via cooperation. Most cooperative communication solutions are based on fixed spectrum access schemes and thus cannot further improve spectrum efficiency. In order to support more users in the existing spectrum, we consider dynamic spectrum access schemes and cognitive radio techniques in this dissertation. Our work includes the modelling, characterization and optimization of QoS-constrained cooperative networks and cognitive radio networks. QoS constraints such as delay and data rate are modelled. To solve power control and channel resource allocation problems, dynamic power control, matching theory and multi-armed bandit algorithms are employed in our investigations. In this dissertation, we first consider a cluster-based cooperative wireless network utilizing a centralized cooperation model. The dynamic power control and optimization problem is analyzed in this scenario. We then consider a cooperative cognitive radio network utilizing an opportunistic spectrum access model. Distributed spectrum access algorithms are proposed to help secondary users utilize vacant channels of primary users in order to optimize the total utility of the network. Finally, a noncooperative cognitive radio network utilizing the opportunistic spectrum access model is analyzed. In this model, primary users do not communicate with secondary users. Therefore, secondary users are required to find vacant channels on which to transmit. Multi-armed bandit algorithms are proposed to help secondary users predict the availability of licensed channels. In summary, in this dissertation we consider both cooperative communication networks and cognitive radio networks with QoS constraints. Efficient power control and channel resource allocation schemes have been proposed for optimization problems in different scenarios.
2

Stochastic Control of Time-varying Wireless Networks

Lotfinezhad, Mahdi 19 February 2010 (has links)
One critical step to successfully integrate wireless data networks to the high-speed wired backbone is the design of network control policies that efficiently utilize resources to provide Quality of Service (QoS) to the users in the integrated networks. Such a design has remained a challenge since wireless networks are time-varying in nature, not only in terms of user/packet arrivals but also in terms of physical channel conditions and access opportunities. In this thesis, we study the stochastic control of time-varying networks to design efficient scheduling and resource allocation policies. In particular, in Chapter 3, we focus on a broad class of control policies that work based on a pick-and-compare principle for networks with time-varying channels. By trading the throughput for complexity and memory requirement, these policies require less complexity compared to the well-investigated throughput-optimal Generalized Maximum Weight Matching (GMWM) policy and also require only linear-memory storage with the number of data-flows. Through Lyapunov analysis tools, we characterize the stability region and delay performance of the studied policies and show how they vary in response to the channel variations. In Chapter 4, we go into further detail and consider the problem of network control from a new perspective through which we carefully incorporate the time-efficiency of underlying scheduling algorithms. Specifically, we develop a policy that dynamically adjusts the time given to the available scheduling algorithms according to queue-backlog and channel correlations. We study the resulting stability region of developed policy and show that the region is at least as large as the one for any static policy. Finally, motivated by the current under-utilization of wireless spectrum, in Chapter 5, we investigate the control of cognitive radio networks as a special example of networks that provide time-varying access opportunities. We assume that users dynamically join and leave the network and may have different utility functions, or could collaborate for a common purpose. We develop a policy that performs joint admission and resource control and works for any user load, either inside or outside the capacity region. Through Lyapunov Optimization techniques, we show that the developed policy can achieve a utility performance arbitrarily close to the optimality with a tradeoff in the average service delay of admitted users.
3

Stochastic Control of Time-varying Wireless Networks

Lotfinezhad, Mahdi 19 February 2010 (has links)
One critical step to successfully integrate wireless data networks to the high-speed wired backbone is the design of network control policies that efficiently utilize resources to provide Quality of Service (QoS) to the users in the integrated networks. Such a design has remained a challenge since wireless networks are time-varying in nature, not only in terms of user/packet arrivals but also in terms of physical channel conditions and access opportunities. In this thesis, we study the stochastic control of time-varying networks to design efficient scheduling and resource allocation policies. In particular, in Chapter 3, we focus on a broad class of control policies that work based on a pick-and-compare principle for networks with time-varying channels. By trading the throughput for complexity and memory requirement, these policies require less complexity compared to the well-investigated throughput-optimal Generalized Maximum Weight Matching (GMWM) policy and also require only linear-memory storage with the number of data-flows. Through Lyapunov analysis tools, we characterize the stability region and delay performance of the studied policies and show how they vary in response to the channel variations. In Chapter 4, we go into further detail and consider the problem of network control from a new perspective through which we carefully incorporate the time-efficiency of underlying scheduling algorithms. Specifically, we develop a policy that dynamically adjusts the time given to the available scheduling algorithms according to queue-backlog and channel correlations. We study the resulting stability region of developed policy and show that the region is at least as large as the one for any static policy. Finally, motivated by the current under-utilization of wireless spectrum, in Chapter 5, we investigate the control of cognitive radio networks as a special example of networks that provide time-varying access opportunities. We assume that users dynamically join and leave the network and may have different utility functions, or could collaborate for a common purpose. We develop a policy that performs joint admission and resource control and works for any user load, either inside or outside the capacity region. Through Lyapunov Optimization techniques, we show that the developed policy can achieve a utility performance arbitrarily close to the optimality with a tradeoff in the average service delay of admitted users.

Page generated in 0.0672 seconds