• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 2
  • 1
  • Tagged with
  • 33
  • 33
  • 33
  • 14
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Dynamic reconfigurable platform for swarm robotics

Heath, Gerhardus 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: Swarm intelligence research was inspired by biological systems in nature. Working ants and bees has captivated researchers for centuries, with the ant playing a major role in shaping the future of robotic swarm applications. The ants foraging activity can be adapted for different applications of robotic swarm intelligence. Numerous researchers have conducted theoretical analysis and experiments on the ants foraging activities and communication styles. Combining this information with modern reconfigurable computing opens the door to more complex behaviour with improved system dynamics. Reconfigurable computing has numerous applications in swarm intelligence such as true hardware parallel processing, dynamic power save algorithms and dynamic peripheral changes to the CPU core. In this research a brief study is made of swarm intelligence and its applications. The ants' foraging activities were studied in greater detail with the emphasis on a layered control system designed implementation in a robotic agent. The robotic agent’s hardware was designed using a partial self reconfigurable FPGA as the main building element. The hardware was designed with the emphasis on system flexibility for swarm application drawing attention to power reduction and battery life. All of this was packaged into a differential drive chassis designed specifically for this project. / AFRIKAANSE OPSOMMING: Die motivering vir swerm robotika kom van die natuur. Vir eeue fassineer swerm insekte soos bye en miere navorsers. Dit is verstommend hoe ’n groep klein en nietige insekte sulke groot take kan verrig. Die mier speel ‘n belangrike rol en is die sentrale tema van menige publikasies. Die mier se kos-soek aktiwiteit kan aangepas word vir swerm robotika toepassings. Hierdie aktiwiteit vervat verskeie sleutel konsepte wat belangrik is vir robotika toepassings. Deur bv. die mier se aktiwiteite te kombineer met dinamies herkonfigureerbare hardeware, kan meer komplekse gedrag bestudeer word. Die stelsel dinamika verbeter ook, aangesien dit nou moontlik is om sekere take in parallel uit te voer. Deur ’n interne prosesseerder in die herkonfigureerbare hardeware in te sluit, is dit nou vir die stelsel moontlik om homself te verander tydens taak verrigting. Komplekse krag bestuur gedrag is ook moontlik deurdat die prosesseerder die spoed en rand apparaat kan verander soos benodig. ‘n Verdere voordeel is dat die stelsel aanpasbaar is en dus vir verskeie navorsingsprojekte gebruik kan word. In hierdie navorsing word ’n literatuur studie van swerm robotika gemaak en word daar ook na toepassings gekyk. Met die klem op praktiese implementering, word die mier se kos-soek aktiwiteit in detail ondersoek deur gebruik te maak van ’n laag beheerstelsel. In hierdie laag beheerstelsel verteenwoordig elke laag ’n hoër vlak gedrag. Stelsel aanpasbaarheid en lae kragverbruik speel ’n deurslaggewende rol in die ontwerp, en om hierdie rede vorm ’n FPGA die hart van die sisteem.
32

Design and Development of 75 mm Fixed-Wing Nano Air Vehicle

Pushpangathan, Jinraj V January 2017 (has links) (PDF)
This thesis deals with the design and development of a 75 mm fixed-wing nano-air vehicle (NAV). The NAV is designed to fit inside a cube with each side measuring 75 mm. The range and endurance of the NAV are 300 m and 2-3 minutes, respectively. The high-wing horizontal tailless NAV has a take-off weight of 19.5 g. The battery-powered single propeller NAV has two control surfaces in the form of elevator and rudder. This thesis contains a detailed account of the airfoil selection, selection of the configuration of NAV and the longitudinal, lateral and directional aerodynamic characterization of the NAV. The development of one of the lightweight autopilot hardware which weighs 1.8 g is also given in detail. The development of non-linear equations of motion of NAV including thrust and coupling effects is also discussed. The effects of the gyroscopic coupling and counter torque on the linear dynamics of the NAV are analyzed by conducting a parametric study about the variation of the eigenstructure attributable to the varying degree of coupling in the system matrix of the linear coupled model. A robust simultaneously stabilizing output feedback controller is synthesized for stabilizing the plants of the NAV. The synthesizing of the robust simultaneously stabilizing output feedback controller is based on a frequency-shaped central plant. A new procedure is developed to determine the frequency-shaped central plant utilizing the v-gap metric between the plants, the frequency-shaping of the plants with the pre and post compensators and the robust stabilization theory. An optimization problem is formulated to obtain these compensators. A novel iterative algorithm is developed to acquire the compensators by solving the optimization problem. Thereafter, an iterative algorithm is developed to find an output feedback controller for robust simultaneous stabilization by blending the existing features of robust stability condition of right co-prime uncertainty model of the frequency-shaped central plant, the maximum v-gap metric of the frequency-shaped central plant, H∞ loop-shaping and eigenstructure assignment algorithm for output feedback using the genetic algorithm. The six-degree-of-freedom numerical and hardware-in-loop simulations (HILS) of closed-loop non-linear and linear plants of NAV are performed to assess the performance of the controller and to validate the control algorithm implemented in the autopilot. The airworthiness of the aircraft is tested by conducting flight trials in radio-controlled (RC) mode without including the autopilot. The successful RC flight trial of the NAV indicates airworthiness of the aircraft which aided in freezing the configuration. This is one of the smallest fixed wing aerial vehicle that was successfully flown till date.
33

Active Vibration Control Synthesis Using Viscoelastic Damping Phenomena

Vadiraja, G K 07 1900 (has links) (PDF)
In this thesis, a new method is followed to design an active control system which imparts viscoelastic phenomenological damping in an elastic structure. Properties of a hypothetical viscoelastic system are used to design an active feedback controller for an undamped structural system with distributed sensor, actuator and controller. The variational structure is projected on a solution space of a closed-loop system involving a weakly damped structure with distributed sensor and actuator with controller. These controller components assign the phenomenology based on internal strain rate damping parameter of a viscoelastic system to the undamped elastic structure. An elastic cantilever beam with proportional-derivative controller and displacement feedback is considered in all the design formulations. In the first part of the research, a closed-loop control system is designed using two time domain modern control system design methods, pole placement and optimal pole placement, which use viscoelastic damping parameter. Equation of motion of a viscoelastic system is employed to synthesize the desired closed-loop poles. Desired poles are then assigned to an elastic beam with an active controller. Time domain finite element formulation is used without considering actuator-sensor dynamics and the effect of transducer locations. Characteristics of closed-loop system gains are found as a function of desired damping parameter and realization of damping have been analyzed with closed loop system pole positions. The next part consists of a novel frequency domain active control system design to impart desired viscoelastic characteristics, which uses spectral method and the exact dynamic stiffness matrix of the system. In the first case, a sub-optimal local control system for a cantilever beam, with collocated actuator and sensor is designed. In the second case, a closed-loop local controller for an elastic system with non-collocated transducers is designed. Next, a global controller for non-collocated arrangement of sensor-actuator is designed by considering all the degrees-of freedom in the system, which leads to solving an eigenvalue problem. The reason for the failure of the collocated arrangement in global control is also explained. In this novel control system design method transducer dynamics and locations are considered in the formulation. In frequency domain design, the frequency responses of the system show satisfactory performance of the closed-loop elastic system. The closed-loop system is able to reproduce the desired viscoelastic characteristics as targeted in the design. Optimal and sub-optimal system gains are found as functions of transducer locations, transducer properties, excitation frequency and internal strain rate damping parameter of a hypothetical viscoelastic system. Performance of the closed loop system is established by comparing the specific damping capacity of the hypothetical viscoelastic system with that of the closed-loop elastic system. The novel frequency domain method is simple, accurate, efficient and can be extended to complex structures to achieve desired damping. The method can be a better way of designing structures with variable stiffness which has research potential in designing morphing airplanes/spacecrafts. The ultimate goal of this research is that, if this design method is applied to practical applications such as aircraft wings, where vibration is undesirable, one would be able to achieve strength and desired damping characters simultaneously.

Page generated in 0.0865 seconds