• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 588
  • 272
  • 104
  • 103
  • 37
  • 34
  • 22
  • 20
  • 18
  • 18
  • 18
  • 18
  • 18
  • 17
  • 12
  • Tagged with
  • 1449
  • 424
  • 218
  • 191
  • 183
  • 173
  • 144
  • 140
  • 137
  • 134
  • 126
  • 125
  • 112
  • 108
  • 107
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF DOUBLE-DIFFUSIVE CONVECTION IN A HORIZONTAL LAYER OF POROUS MEDIUM.

MURRAY, BRUCE THOMAS. January 1986 (has links)
The onset conditions and the behavior of the developed secondary flow were investigated for double-diffusive convection in a horizontal layer of porous medium. The work concentrated on the case in which the layer is heated from below and saturated with a fluid having a stabilizing concentration gradient. Because the component with the larger diffusivity (heat) is destabilizing and the component with the smaller diffusivity (solute) is stabilizing, the motion at onset is predicted to be oscillatory according to linear stability theory. Experiments were conducted in a rectangular tank 24 cm long x 12 cm wide x 4 cm deep filled with glass beads 3 mm in diameter. The saturating fluid was distilled water and NaCl was the solute. The basic state salinity profiles were slowly diffusing in time, because the salt concentration was not maintained fixed at the solid top and bottom boundaries. Sustained oscillations were not detected at onset in the experiments; instead, there was a dramatic increase in the heat flux at the critical temperature difference. After more than one thermal diffusion time, the heat flux reached a steady value, which increased monotonically if the temperature difference was increased further. When the temperature difference was reduced, the heat flux exhibited hysteresis. Flow visualization indicated that the convection pattern of the developed flow was three-dimensional. In order to better model the experiments, linear theory was extended to include the effects of temperature-dependent thermal expansion coefficient and viscosity for water and the actual solute boundary conditions in the experiment. These extensions of the linear theory required numerical solution procedures. In addition, nonlinear solutions were obtained using finite differences, assuming the problem is two-dimensional. In the nonlinear calculations, the oscillatory motion predicted by linear theory was found to be unstable at finite amplitude. The breakdown of the initial oscillatory motion is followed by a large increase in the heat transport, similar to what was observed in the experiments. Both steady and oscillatory nonlinear asymptotic solutions were found, depending on the governing parameter values. Hysteresis in the heat curve was also obtained.
22

Experimental Study of Turbulent Natural Convective Condensation In the Presence of Non-Condensable Gas on Vertical and Inclined Surfaces

Swartz, Matthew M. 01 May 2017 (has links)
Pressurized water reactor nuclear plants, currently under construction, have been designed with passive containment cooling systems. Turbulent, natural-convective condensation, with high non-condensable mass fraction, on the walls of the containment vessel is a primary heat transfer mechanism in these new plant designs. A number of studies have been completed over the past two decades to justify use of the heat and mass transfer analogy for this scenario. A majority of these studies are founded upon natural-convective heat transfer correlations and apply a diffusion layer model to couple heat and mass transfer. Reasonable success in predicting experimental trends for vertical surfaces has been achieved when correction factors are applied. The corrections are attributed to mass transfer suction, film waviness or mist formation, even though little experimental evidence exists to justify these claims. This work examines the influence of film waves and mass transfer suction on the turbulent, natural-convective condensing flow with non-condensable gas present. Testing was conducted using 0.457 m x 2.13 m and a 0.914 m x 2.13 m condensing surfaces suspended in a large pressure vessel. The test surfaces could be rotated from vertical to horizontal to examine the inclination angle effect. The test facility implements relatively high accuracy calorimetric and condensate mass flow measurements to validate the measured heat and mass transfer rates. Test results show that application of the Bayley (1955) and Al-Arabi and Sakr (1988) heat transfer correlations using the heat and mass transfer analogy is appropriate for conditions in which the liquid film remains laminar. For transitional and wavy film flows, a clear augmentation in heat transfer was observed due to disruption of the gas layer by film waves. This result has implications for the scalability of existing correlations. A new correlation is proposed and results compared to several other datasets.
23

Scaling and intermittency of velocity fluctuations in turbulent convection. / 湍流對流中速度漲落量之標度律與間歇性 / Scaling and intermittency of velocity fluctuations in turbulent convection. / Tuan liu dui liu zhong su du zhang luo liang zhi biao du lü yu jian xie xing

January 2004 (has links)
Leung Chun Kit = 湍流對流中速度漲落量之標度律與間歇性 / 梁振傑. / Thesis submitted in: 31st October, 2003. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 69-71). / Text in English; abstracts in English and Chinese. / Leung Chun Kit = Tuan liu dui liu zhong su du zhang luo liang zhi biao du lü yu jian xie xing / Liang Zhenjie. / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Rayleigh-Benard Convection Experiment --- p.6 / Chapter 2.1 --- Rayleigh-Benard convection --- p.6 / Chapter 2.2 --- Experimental measurements --- p.7 / Chapter 3 --- Probability Density Functions of Velocity Differences --- p.10 / Chapter 3.1 --- Important time scales --- p.11 / Chapter 3.2 --- PDF calculation --- p.13 / Chapter 3.3 --- Results --- p.14 / Chapter 4 --- Characterization of Velocity Intermittency --- p.23 / Chapter 4.1 --- SL hierarchy for the velocity fluctuations --- p.23 / Chapter 4.2 --- Checking SL hierarchy --- p.24 / Chapter 4.3 --- Results --- p.25 / Chapter 5 --- The Most Intense Velocity Structures --- p.45 / Chapter 5.1 --- The most intense velocity structures and the parameters a and b --- p.45 / Chapter 5.2 --- Estimating the parameters a and b --- p.46 / Chapter 5.3 --- Results --- p.47 / Chapter 5.4 --- Checking a conjecture --- p.63 / Chapter 6 --- Conclusion --- p.67 / Bibliography --- p.69
24

Experimental investigation of high prandtl number turbulent convection. / 高普朗特數湍流對流的實驗硏究 / Experimental investigation of high prandtl number turbulent convection. / Gao pu lang te shu tuan liu dui liu de shi yan yan jiu

January 2000 (has links)
Lam Siu = 高普朗特數湍流對流的實驗硏究 / 林霄. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 97-100). / Text in English; abstracts in English and Chinese. / Lam Siu = Gao pu lang te shu tuan liu dui liu de shi yan yan jiu / Lin Xiao. / Abstract (in English) --- p.i / Abstract (in Chinese) --- p.ii / Acknowledgements --- p.iii / Table of Contents --- p.iv / List of Figures --- p.vi / List of Tables --- p.ix / Chapters / Chapter I. --- Introduction --- p.1 / Chapter II. --- Turbulent Rayleigh-Benard Convection --- p.5 / Chapter 2.1 --- Rayleigh-Benard Convection --- p.5 / Chapter 2.2 --- The Convection Equations --- p.6 / Chapter 2.3 --- The parameters --- p.7 / Chapter 2.4 --- Recent Developments --- p.9 / Chapter 2.4.1 --- Heat Transport --- p.9 / Chapter 2.4.2 --- Large-scale Circulation and thermal Plumes --- p.11 / Chapter 2.4.3 --- Boundary Layers --- p.12 / Chapter III. --- Experimental Setup and Methods --- p.15 / Chapter 3.1 --- The Apparatus --- p.15 / Chapter 3.2 --- The Working Fluids --- p.18 / Chapter 3.3 --- Thermal Measurements --- p.23 / Chapter 3.4 --- Flow Visualization --- p.26 / Chapter IV. --- Heat Transport in Turbulent Convection --- p.29 / Chapter 4.1 --- The Non-Boussinesq Effect --- p.30 / Chapter 4.2 --- Experimental Results --- p.34 / Chapter 4.2.1 --- 1-Pentanol --- p.35 / Chapter 4.2.2 --- Triethylene Glycol --- p.36 / Chapter 4.2.3 --- Results from Dipropylene Glycol --- p.37 / Chapter 4.3 --- Discussion on the Results --- p.38 / Chapter 4.4 --- Summary --- p.43 / Chapter V. --- Local Temperature Measurements --- p.45 / Chapter 5.1 --- Temperature Time Series and Histograms --- p.45 / Chapter 5.2 --- Mean Temperature Profiles and Thermal Boundary Layers --- p.55 / Chapter 5.3 --- RMS Profiles --- p.58 / Chapter 5.4 --- Skewness Profiles --- p.65 / Chapter 5.5 --- Summary --- p.68 / Chapter VI. --- Measurements on the Viscous Boundary Layers --- p.70 / Chapter 6.1 --- Power Spectrum --- p.70 / Chapter 6.2 --- Two-Probe Cross-correlation --- p.76 / Chapter 6.3 --- Laser Light Scattering --- p.84 / Chapter 6.4 --- Summary --- p.90 / Chapter VII --- . Conclusions --- p.93 / References --- p.97
25

Conditional temperature structure functions in turbulent convection. / 對流湍流中條件溫度結構函數之硏究 / Conditional temperature structure functions in turbulent convection. / Dui liu tuan liu zhong tiao jian wen du jie gou han shu zhi yan jiu

January 2000 (has links)
Chau Kwok Leung = 對流湍流中條件溫度結構函數之硏究 / 周國良. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves [93]-94). / Text in English; abstracts in English and Chinese. / Chau Kwok Leung = Dui liu tuan liu zhong tiao jian wen du jie gou han shu zhi yan jiu / Zhou Guoliang. / Abstract --- p.i / Abstract (Chinese Version) --- p.ii / Acknowledgement --- p.iii / Table of contents --- p.iv / List of figures --- p.v / List of tables --- p.xiii / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Rayleigh Benard experiments --- p.6 / Chapter 2.1 --- Rayleigh-Benard Experiment --- p.6 / Chapter 2.2 --- Rayleigh-Benard Convection using Helium --- p.8 / Chapter 2.3 --- Rayleigh-Benard Convection Experiment using water --- p.9 / Chapter 2.4 --- Passive Temperature Measurements in a Wind Tunnel Experiment --- p.10 / Chapter 3 --- Conditional Probability density function of the Temperature Differences --- p.11 / Chapter 3.1 --- Approximation of locally averaged temperature dissipation rate --- p.12 / Chapter 3.2 --- Conditional PDF for r < Tb --- p.14 / Chapter 3.3 --- Conditional PDF for r > Tb --- p.18 / Chapter 4 --- Conditional Statistics of Temperature Difference --- p.26 / Chapter 4.1 --- Distribution of In xT --- p.26 / Chapter 4.2 --- XT-dependence of 〈\TT\P\XT〉 --- p.28 / Chapter 4.2.1 --- Xr-dependence for small T --- p.28 / Chapter 4.2.2 --- XT dependence for large T --- p.31 / Chapter 4.3 --- "m(T,P)" --- p.39 / Chapter 4.4 --- Consequence of the Standard Gaussian Conditional PDF for T >Tb --- p.53 / Chapter 4.5 --- c(T,p) --- p.57 / Chapter 4.5.1 --- T>Tb --- p.60 / Chapter 4.5.2 --- T>Tb --- p.64 / Chapter 5 --- Height dependence of Conditional Temperature Structure Function --- p.69 / Chapter 5.1 --- Determination of rc and Td --- p.69 / Chapter 5.2 --- Height dependence of Conditional Temperature Structure Function --- p.72 / Chapter 6 --- Discussion --- p.78 / Chapter 6.1 --- Comparison with passive measurement --- p.78 / Chapter 6.2 --- Pr-dependence of Conditional PDF on XT --- p.87 / Chapter 7 --- Conclusion --- p.90 / Bibliography --- p.94
26

Statistics and coherent structures in turbulent convection =: 對流湍流中統計及相干結構的硏究. / 對流湍流中統計及相干結構的硏究 / Statistics and coherent structures in turbulent convection =: Dui liu tuan liu zhong tong ji ji xiang gan jie gou de yan jiu. / Dui liu tuan liu zhong tong ji ji xiang gan jie gou de yan jiu

January 1998 (has links)
by Ma Kin Lok. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 93-95). / Text in English; abstract also in Chinese. / by Ma Kin Lok. / Acknowledgements --- p.i / Abstract --- p.ii / Abstract (Chinese version) --- p.iv / Contents --- p.v / List of Figures --- p.vii / List of Tables --- p.ix / Chapter Chapter 1. --- Introduction --- p.1 / Chapter Chapter 2. --- Experimental setups and Coherent structures --- p.10 / Chapter 2.1 --- Experimental setup for turbulent convection using helium --- p.10 / Chapter 2.2 --- Experimental setup for turbulent convection using water --- p.12 / Chapter 2.3 --- Coherent structures in turbulent convection --- p.13 / Chapter Chapter 3. --- Statistics in turbulent convection --- p.16 / Chapter 3.1 --- Statistics versus Rayleigh number and height --- p.16 / Chapter 3.1.1 --- Time series of normalized temperature fluctuations --- p.17 / Chapter 3.1.2 --- PDF of normalized temperature fluctuations --- p.18 / Chapter 3.1.3 --- q(x) and r(x) --- p.21 / Chapter 3.2 --- Statistics versus height --- p.25 / Chapter 3.2.1 --- Time series of normalized temperature fluctuations --- p.25 / Chapter 3.2.2 --- PDF of normalized temperature fluctuations --- p.28 / Chapter 3.2.3 --- Skewness and flatness of normalized temperature fluctuations --- p.32 / Chapter 3.2.4 --- q(x) and r(x) --- p.33 / Chapter Chapter 4. --- Decomposition of the helium data --- p.40 / Chapter 4.1 --- Method of study for decomposition --- p.41 / Chapter 4.2 --- Effects of the decomposition on P(x) --- p.44 / Chapter 4.3 --- Modeling of coherent structures by average peaks --- p.46 / Chapter 4.4 --- The two conditional averages of the average peaks --- p.52 / Chapter 4.5 --- Effects of the peaks on PDF --- p.57 / Chapter Chapter 5. --- Statistics of Temperature Dissipation Rate --- p.62 / Chapter 5.1 --- She and Leveque's model for energy dissipation rate --- p.62 / Chapter 5.2 --- Limits of moments of temperature dissipation rate --- p.66 / Chapter 5.3 --- Scaling of moments of temperature dissipation rate --- p.68 / Chapter Chapter 6. --- Conclusions --- p.37 / Appendix A. The relation between Nu and λth --- p.89 / Appendix B. The algorithm of filtering the peaks --- p.90 / Appendix C. Effect of normalization on the conditional averages --- p.91 / Bibliography --- p.93
27

Dynamics of the large-scale circulation in high prandtl number turbulent Rayleigh-Bénard convection. / 高普朗特數瑞利-伯納德對流中大尺度環流動力學特性研究 / Dynamics of the large-scale circulation in high prandtl number turbulent Rayleigh-Bénard convection. / Gao pu lang te shu Ruili-Bonade dui liu zhong da chi du huan liu dong li xue te xing yan jiu

January 2012 (has links)
自然界中存在很多的湍流熱對流現象。他們對於工業,科學與技術有著非常重要的影響。在本論文中我們利用多温度探头的技术研究了湍流熱對流的理想模型-湍流瑞利-伯納德對流中的大尺度環流在高普朗特數下的動力學特性。 / 實驗中,我们利用水和電子液體FC77 作為工作物質,獲得了普朗特數Pr 從5.3 到19.4. 瑞利數Ra 範圍8.3 × 10⁸ 2.94 × 10¹¹.我們用了一個寬高比Γ 為1 的圓柱形對流槽來研究大尺度環流的動力學特性。我們發現,在高普朗特數的時候,大尺度環流仍然是一個single roll. 這個與我們期望的是一樣的。大尺度環流的強度δ 的概率密度函數是一個高斯分佈。但是左邊的尾巴可以用一個指數函數來描述。我們也觀察到了大尺度環流傾向於呆在一個特定的角向位置。我們還發現,大尺度流動的角向運動具有擴散運動的特性。但是,用FC77 作為工作物質時,這個角向運動的擴散係數比用水作為工作物質時小兩個量級。實驗中測量到的雷諾數Re 和瑞利數Ra 之間的標度率與之前的實驗結果相符合。同時這個標度率也和Grossman-Lohse 模型的預測相符合。 / 大尺度流動豐富的動力學特性,比如說流動停止,流向反轉,扭轉還有平移振盪以及流動模式轉換,都可以在高普朗特數的時候觀察到。比較有趣的是我們發現流動停止在一個三維系統中既不依賴於Ra, 又不依賴於Pr. 這個結果和二維的瑞利-伯納德對流完全不同。 / Turbulent thermal convection is of tremendous importance to many areas of science, technology as well as the environment. In this thesis, the dynamics of the large-scale circulation (LSC) in turbulent Rayleigh-B´enard convection, which is an idealised model to study turbulent thermal convection problem, is investigated using the multi-thermal probe technique in the high Prandtl number Pr regime. / Using two kinds of working fluids, namely water and Fluorinert FC77, we achieved Pr from 5.3 to 19.4 and Rayleigh number Ra from 8.3×10⁸ to 2.94×10¹¹. The dynamics of the LSC is measured in an aspect ratio unity convection cell. It is found that the LSC in the high Pr regime is a single roll structure as expected. The probability distribution of the flow strength δ is a Gaussian distribution function with exponential tail to the left. The preferred orientation is also observed, which is revealed by the PDF of azimuthal orientation θ of the LSC. The azimuthal motion of the LSC is a diffusive process, which is the same as previous studies. However, we found that the diffusivity of the angular speed using FC77 as the working fluid is two orders smaller than using water as working fluid. The scaling of the measured Reynolds number Re number based on the oscillation frequency of the LSC with respect to Ra is in good agreement with previous experimental results and also Grossman-Lohse model prediction. / The abundant dynamical features of the LSC, such as cessations, flow reversals, torsional and sloshing oscillations and flow mode transitions are also observed in the high Pr regime. One surprising finding is that the cessation frequency of the LSC ,based on the statistics of the mid-height level of thermistors, is independent of both Ra and Pr, which is quite different from the (quasi) two-dimensional turbulent Rayleigh-B´enard convection. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Xie, Yichao = 高普朗特數瑞利-伯納德對流中大尺度環流動力學特性研究 / 謝毅超. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 53-57). / Abstracts also in Chinese. / Xie, Yichao = Gao pu lang te shu Ruili-Bonade dui liu zhong da chi du huan liu dong li xue te xing yan jiu / Xie Yichao. / Abstract --- p.ii / Acknowledgement --- p.iv / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Natural convection and Rayleigh-B´enard convection --- p.1 / Chapter 1.2 --- Governing equation and control parameters of RB Convection --- p.2 / Chapter 1.3 --- The large-scale circulation in turbulent RB convection --- p.4 / Chapter 1.4 --- Motivation and organisation of this thesis --- p.6 / Chapter 2 --- Experimental Setup and Measurement Techniques --- p.7 / Chapter 2.1 --- The convection cell --- p.7 / Chapter 2.1.1 --- The conduction plate and sidewall --- p.7 / Chapter 2.1.2 --- Cooling and heating system --- p.7 / Chapter 2.1.3 --- Level of the convection system --- p.7 / Chapter 2.2 --- The thermistor and it’s calibration --- p.9 / Chapter 2.3 --- Multi-thermal-probe technique --- p.10 / Chapter 2.4 --- Data analysis method --- p.12 / Chapter 2.4.1 --- Sinusoidal fitting method (SF method) --- p.12 / Chapter 2.4.2 --- Temperature extrema extraction method (TEE method) --- p.13 / Chapter 2.5 --- Physical properties of FC77 --- p.14 / Chapter 2.6 --- Other equipment --- p.15 / Chapter 3 --- Dynamics of LSC in high Pr turbulent RBC --- p.16 / Chapter 3.1 --- Background --- p.16 / Chapter 3.2 --- Experimental setup and data analyse method --- p.18 / Chapter 3.3 --- Results and discussion --- p.19 / Chapter 3.3.1 --- General features of the LSC --- p.19 / Chapter 3.3.2 --- Statistics of the angular speed --- p.23 / Chapter 3.3.3 --- Reynolds number Re --- p.30 / Chapter 3.3.4 --- Cessations, reversals and flow mode transitions --- p.34 / Chapter 3.3.5 --- Torsional and sloshing motions of the LSC --- p.42 / Chapter 3.4 --- Summary --- p.48 / Chapter 4 --- Conclusion and outlook --- p.51 / Chapter 4.1 --- Conclusion --- p.51 / Chapter 4.2 --- Outlook --- p.51 / Bibliography --- p.53
28

Relations between velocity and temperature fluctuations in turbulent convection. / 湍流對流中速度及溫度漲落量之關係 / Relations between velocity and temperature fluctuations in turbulent convection. / Tuan liu dui liu zhong su du ji wen du zhang luo liang zhi guan xi

January 2003 (has links)
Chui Ka Wing = 湍流對流中速度及溫度漲落量之關係 / 徐家榮. / Thesis submitted in: August 2002. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 77-78). / Text in English; abstracts in English and Chinese. / Chui Ka Wing = Tuan liu dui liu zhong su du ji wen du zhang luo liang zhi guan xi / Xu Jiarong. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- The Kolmogorov 1941 Theory (K41) --- p.3 / Chapter 1.3 --- She-Leveque hierarchical structure(SLHS) --- p.4 / Chapter 1.4 --- Rayleigh-Benard convection --- p.6 / Chapter 2 --- Velocity and temperature structure functions --- p.11 / Chapter 2.1 --- The velocity measurements --- p.11 / Chapter 2.2 --- The characteristic time scales --- p.14 / Chapter 2.3 --- The validity of GESS --- p.18 / Chapter 2.4 --- The validity of SLHS and the estimated values of β --- p.22 / Chapter 3 --- Relations implied by Bolgiano scaling --- p.27 / Chapter 4 --- Correlation between temperature and velocity differences --- p.51 / Chapter 4.1 --- The correlation coefficient --- p.51 / Chapter 4.2 --- Normalized conditional average --- p.53 / Chapter 5 --- Generalized scaling between velocity and temperature struc- ture functions --- p.60 / Chapter 5.1 --- Relations between p and p --- p.70 / Chapter 5.2 --- Relation between Δpv and Δp --- p.72 / Chapter 6 --- Summary --- p.75 / Bibliography --- p.77 / Chapter A --- Derivation of Eq. (1.11) and (1.12) --- p.79 / Chapter A.1 --- Derivation of Eq.(1.11) --- p.79 / Chapter A.2 --- Derivation of Eq.(1.12) --- p.80
29

High Prandtl number turbulent convection over rough surfaces. / 在粗糙表面的高普朗特數湍流對流實驗 / High Prandtl number turbulent convection over rough surfaces. / Zai cu cao biao mian de gao Pulangte shu tuan liu dui liu shi yan

January 2004 (has links)
Chan Ho-Sun = 在粗糙表面的高普朗特數湍流對流實驗 / 陳浩新. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 69-72). / Text in English; abstracts in English and Chinese. / Chan Ho-Sun = Zai cu cao biao mian de gao Pulangte shu tuan liu dui liu shi yan / Chen Haoxin. / Abstract (in English) --- p.i / Abstract (in Chinese) --- p.ii / Acknowledgements --- p.iii / Table of Contents --- p.iv / List of Figures --- p.vi / List of Tables --- p.viii / Chapters / Chapter 1. --- Introduction --- p.1 / Chapter 2. --- Theories about the Convection --- p.7 / Chapter 2.1 --- Rayleigh-Benard convection --- p.7 / Chapter 2.2 --- The Convection Equations --- p.8 / Chapter 3. --- Setup of the Experimental Environment --- p.15 / Chapter 3.1 --- The Convection Cell --- p.15 / Chapter 3.2 --- Thermistors --- p.19 / Chapter 3.3 --- The Working Fluids --- p.22 / Chapter 3.4 --- Thermal Measurements --- p.27 / Chapter 3.5 --- Temperature Control Box --- p.28 / Chapter 4. --- Heat Transport Measurement --- p.29 / Chapter 4.1 --- Correction Procedures --- p.30 / Chapter 4.2 --- The Non-Boussinesq Effects --- p.33 / Chapter 4.3 --- Experiment Results --- p.41 / Chapter 4.3.1 --- Triethylene Glycol --- p.41 / Chapter 4.3.2 --- Dipropylene Glycol --- p.45 / Chapter 4.4 --- Discussion on the Results of Heat Transport --- p.50 / Chapter 4.5 --- Discussion on the Results of RMS Fluctuations --- p.60 / Chapter 4.6 --- The data set of pr =1400 --- p.63 / Chapter 5. --- Conclusion --- p.65 / References --- p.69
30

experimental study of modulated thermal turbulence. / 受調諧下溫度湍流的實驗研究 / An experimental study of modulated thermal turbulence. / Shou diao xie xia wen du tuan liu de shi yan yan jiu

January 2005 (has links)
Lau Chun Keung = 受調諧下溫度湍流的實驗研究 / 劉振強. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 86-88). / Text in English; abstracts in English and Chinese. / Lau Chun Keung = Shou diao xie xia wen du tuan liu de shi yan yan jiu / Liu Zhenqiang. / Chapter 1 --- Acknowledgments --- p.iii / Chapter 2 --- Introduction --- p.1 / Chapter 2.1 --- Pulsating flow --- p.1 / Chapter 2.2 --- Rayleigh Bernard Convection: Equations and Parameters --- p.5 / Chapter 2.3 --- Rayleigh Benard Convection: Physical Picture --- p.7 / Chapter 2.4 --- Previous work on Turbulent Convection --- p.10 / Chapter 2.5 --- Motivation --- p.11 / Chapter 3 --- Experimental Setup --- p.13 / Chapter 3.1 --- The Convection cell --- p.13 / Chapter 3.2 --- Heating and Cooling --- p.18 / Chapter 3.3 --- Temperature and Voltage measurement --- p.20 / Chapter 3.3.1 --- Temperature Probes --- p.20 / Chapter 3.3.2 --- "Data, acquisition: Multimeters and Lock-In" --- p.22 / Chapter 4 --- Experimental Results --- p.27 / Chapter 4.1 --- Steady State Convection --- p.27 / Chapter 4.1.1 --- Experimental parameters and its determination --- p.27 / Chapter 4.1.2 --- Fluctuations at various locat ion of cell --- p.28 / Chapter 4.1.3 --- Nusselt Number --- p.37 / Chapter 4.2 --- Modulated Convection --- p.38 / Chapter 4.2.1 --- Parameters of the system --- p.40 / Chapter 4.2.2 --- Temperature variation at the plates: general picture --- p.41 / Chapter 4.2.3 --- Temperature variation at the plates: modulatiou frequency dependence --- p.42 / Chapter 4.2.4 --- Phase differences between response and modulation --- p.58 / Chapter 4.2.5 --- Temperature Variation at the Plates: Further Exploration of Parameter Space --- p.61 / Chapter 4.2.6 --- Local Signals at Mid-Height under modulation --- p.63 / Chapter 4.2.7 --- Time lag between two probes --- p.76 / Chapter 5 --- Conclusion --- p.83 / Chapter 5.1 --- Conclusion --- p.83 / Chapter 5.2 --- Outlook for further studies --- p.85 / Bibliography --- p.86 / Thermal dissipation rate --- p.89

Page generated in 0.0615 seconds