• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A supercritical R-744 heat transfer simulation implementing various Nusselt number correlations / Philip van Zyl Venter.

Venter, Philip van Zyl January 2010 (has links)
During the past decade research has shown that global warming may have disastrous effects on our planet. In order to limit the damage that the human race seems to be causing, it was acknowledged that substances with a high global warming potential (GWP) should be phased out. In due time, R-134a with a GWP = 1300, may probably be phased out to make way for nature friendly refrigerants with a lower GWP. One of these contenders is carbon dioxide, R-744, with a GWP = 1. Literature revealed that various Nusselt number (Nu) correlations have been developed to predict the convection heat transfer coefficients of supercritical R-744 in cooling. No proof could be found that any of the reported correlations accurately predict Nusselt numbers (Nus) and the subsequent convection heat transfer coefficients of supercritical R-744 in cooling. Although there exist a number of Nu correlations that may be used for R-744, eight different correlations were chosen to be compared in a theoretical simulation program forming the first part of this study. A water-to-transcritical R-744 tube-in-tube heat exchanger was simulated. Although the results emphasise the importance of finding a more suitable Nu correlation for cooling supercritical R-744, no explicit conclusions could be made regarding the accuracy of any of the correlations used in this study. For the second part of this study experimental data found in literature were used to evaluate the accuracy of the different correlations. Convection heat transfer coefficients, temperatures, pressures and tube diameter were employed for the calculation of experimental Nusselt numbers (Nuexp). The theoretical Nu and Nuexp were then plotted against the length of the heat exchanger for different pressures. It was observed that both Nuexp and Nu increase progressively to a maximal value and then decline as the tube length increases. From these results it were possible to group correlations according to the general patterns of their Nu variation over the tube length. Graphs of Nuexp against Nus, calculated according to the Gnielinski correlation, generally followed a linear regression, with R2 > 0.9, when the temperature is equal or above the pseudocritical temperature. From this data a new correlation, Correlation I, based on average gradients and intersects, was formulated. Then a modification on the Haaland friction factor was used with the Gnielinski correlation to yield a second correlation, namely Correlation II. A third and more advanced correlation, Correlation III, was then formulated by employing graphs where gradients and y-intercepts were plotted against pressure. From this data a new parameter, namely the turning point pressure ratio of cooling supercritical R-744, was defined. It was concluded that the employed Nu correlations under predict Nu values (a minimum of 0.3% and a maximum of 81.6%). However, two of the correlations constantly over predicted Nus at greater tube lengths, i.e. below pseudocritical temperatures. It was also concluded that Correlation III proved to be more accurate than both Correlations I and II, as well as the existing correlations found in the literature and employed in this study. Correlation III Nus for cooling supercritical R-744 may only be valid for a diameter in the order of the experimental diameter of 7.73 mm, temperatures that are equal or above the pseudocritical temperature and at pressures ranging from 7.5 to 8.8 MPa. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2010.
2

A supercritical R-744 heat transfer simulation implementing various Nusselt number correlations / Philip van Zyl Venter.

Venter, Philip van Zyl January 2010 (has links)
During the past decade research has shown that global warming may have disastrous effects on our planet. In order to limit the damage that the human race seems to be causing, it was acknowledged that substances with a high global warming potential (GWP) should be phased out. In due time, R-134a with a GWP = 1300, may probably be phased out to make way for nature friendly refrigerants with a lower GWP. One of these contenders is carbon dioxide, R-744, with a GWP = 1. Literature revealed that various Nusselt number (Nu) correlations have been developed to predict the convection heat transfer coefficients of supercritical R-744 in cooling. No proof could be found that any of the reported correlations accurately predict Nusselt numbers (Nus) and the subsequent convection heat transfer coefficients of supercritical R-744 in cooling. Although there exist a number of Nu correlations that may be used for R-744, eight different correlations were chosen to be compared in a theoretical simulation program forming the first part of this study. A water-to-transcritical R-744 tube-in-tube heat exchanger was simulated. Although the results emphasise the importance of finding a more suitable Nu correlation for cooling supercritical R-744, no explicit conclusions could be made regarding the accuracy of any of the correlations used in this study. For the second part of this study experimental data found in literature were used to evaluate the accuracy of the different correlations. Convection heat transfer coefficients, temperatures, pressures and tube diameter were employed for the calculation of experimental Nusselt numbers (Nuexp). The theoretical Nu and Nuexp were then plotted against the length of the heat exchanger for different pressures. It was observed that both Nuexp and Nu increase progressively to a maximal value and then decline as the tube length increases. From these results it were possible to group correlations according to the general patterns of their Nu variation over the tube length. Graphs of Nuexp against Nus, calculated according to the Gnielinski correlation, generally followed a linear regression, with R2 > 0.9, when the temperature is equal or above the pseudocritical temperature. From this data a new correlation, Correlation I, based on average gradients and intersects, was formulated. Then a modification on the Haaland friction factor was used with the Gnielinski correlation to yield a second correlation, namely Correlation II. A third and more advanced correlation, Correlation III, was then formulated by employing graphs where gradients and y-intercepts were plotted against pressure. From this data a new parameter, namely the turning point pressure ratio of cooling supercritical R-744, was defined. It was concluded that the employed Nu correlations under predict Nu values (a minimum of 0.3% and a maximum of 81.6%). However, two of the correlations constantly over predicted Nus at greater tube lengths, i.e. below pseudocritical temperatures. It was also concluded that Correlation III proved to be more accurate than both Correlations I and II, as well as the existing correlations found in the literature and employed in this study. Correlation III Nus for cooling supercritical R-744 may only be valid for a diameter in the order of the experimental diameter of 7.73 mm, temperatures that are equal or above the pseudocritical temperature and at pressures ranging from 7.5 to 8.8 MPa. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2010.
3

A Novel Thermal Method for Pipe Flow Measurements Using a Non-invasive BTU Meter

Alshawaf, Hussain M J A A M A 25 June 2018 (has links)
This work presents the development of a novel and non-invasive method that measures fluid flow rate and temperature in pipes. While current non-invasive flow meters are able to measure pipe flow rate, they cannot simultaneously measure the internal temperature of the fluid flow, which limits their widespread application. Moreover, devices that are able to determine flow temperature are primarily intrusive and require constant maintenance, which can shut down operation, resulting in downtime and economic loss. Consequently, non-invasive flow rate and temperature measurement systems are becoming increasingly attractive for a variety of operations, including for use in leak detection, energy metering, energy optimization, and oil and gas production, to name a few. In this work, a new solution method and parameter estimation scheme are developed and deployed to non-invasively determine fluid flow rate and temperature in a pipe. This new method is utilized in conjunction with a sensor-based apparatus--"namely, the Combined Heat Flux and Temperature Sensor (CHFT+), which employs simultaneous heat flux and temperature measurements for non-invasive thermal interrogation (NITI). In this work, the CHFT+ sensor embodiment is referred to as the British Thermal Unit (BTU) Meter. The fluid's flow rate and temperature are determined by estimating the fluid's convection heat transfer coefficient and the sensor-pipe thermal contact resistance. The new solution method and parameter estimation scheme were validated using both simulated and experimental data. The experimental data was validated for accuracy using a commercially available FR1118P10 Inline Flowmeter by Sotera Systems (Fort Wayne, IN) and a ThermaGate sensor by ThermaSENSE Corp. (Roanoke, VA). This study's experimental results displayed excellent agreement with values estimated from the aforementioned methods. Once tested in conjunction with the non-invasive BTU Meter, the proposed solution and parameter estimation scheme displayed an excellent level of validity and reliability in the results. Given the proposed BTU Meter's non-invasive design and experimental results, the developed solution and parameter estimation scheme shows promise for use in a variety of different residential, commercial, and industrial applications. / MS
4

Vzduchem chlazený kondenzátor / Air cooled condenser

Bochníček, Ondřej January 2017 (has links)
This master´s thesis deals with an air cooled condenser. The specific attention is focused on the condenser in the Brno´s waste-to-energy plant SAKO. The general process of calculation of the heat transfer coefficient is introduced, which is the base for the calculation of the condenser´s output. This process is later used for the calculation of a specific condenser. A considerable part of the thesis is concentrated on the analysis of behavior of the condenser of SAKO in various conditions from the theoretical point of view and then also in terms of real operation using provided operational data.

Page generated in 0.1562 seconds