• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie / Development and analysis of finite volume schemes motivated by the preservation of asymptotic behaviors. Application to models from physics and biology.

Bessemoulin-Chatard, Marianne 30 November 2012 (has links)
Cette thèse est dédiée au développement et à l’analyse de schémas numériques de type volumes finis pour des équations de convection-diffusion, qui apparaissent notamment dans des modèles issus de la physique ou de la biologie. Nous nous intéressons plus particulièrement à la préservation de comportements asymptotiques au niveau discret. Ce travail s’articule en trois parties, composées chacune de deux chapitres. Dans la première partie, nous considérons la discrétisation du système de dérive diffusion linéaire pour les semi-conducteurs par le schéma de Scharfetter-Gummel implicite en temps. Nous nous intéressons à la préservation par ce schéma de deux types d’asymptotiques : l’asymptotique en temps long et la limite quasi-neutre. Nous démontrons des estimations d’énergie–dissipation d’énergie discrètes qui permettent de prouver d’une part la convergence en temps long de la solution approchée vers une approximation de l’équilibre thermique, d’autre part la stabilité à la limite quasi-neutre du schéma. Dans la deuxième partie, nous nous intéressons à des schémas volumes finis préservant l’asymptotique en temps long dans un cadre plus général. Plus précisément, nous considérons des équations de type convection-diffusion non linéaires qui apparaissent dans plusieurs contextes physiques : équations des milieux poreux, système de dérive-diffusion pour les semi-conducteurs... Nous proposons deux discrétisations en espace permettant de préserver le comportement en temps long des solutions approchées. Dans un premier temps, nous étendons la définition du flux de Scharfetter-Gummel pour une diffusion non linéaire. Ce schéma fournit des résultats numériques satisfaisants si la diffusion ne dégénère pas. Dans un second temps, nous proposons une discrétisation dans laquelle nous prenons en compte ensemble les termes de convection et de diffusion, en réécrivant le flux sous la forme d’un flux d’advection. Le flux numérique est défini de telle sorte que les états d’équilibre soient préservés, et nous utilisons une méthode de limiteurs de pente pour obtenir un schéma précis à l’ordre deux en espace, même dans le cas dégénéré. Enfin, la troisième et dernière partie est consacrée à l’étude d’un schéma numérique pour un modèle de chimiotactisme avec diffusion croisée pour lequel les solutions n’explosent pas en temps fini, quelles que soient les données initiales. L’étude de la convergence du schéma repose sur une estimation d’entropie discrète nécessitant l’utilisation de versions discrètes d’inégalités fonctionnelles telles que les inégalités de Poincaré-Sobolev et de Gagliardo-Nirenberg-Sobolev. La démonstration de ces inégalités fait l’objet d’un chapitre indépendant dans lequel nous proposons leur étude dans un contexte assez général, incluant notamment le cas de conditions aux limites mixtes et une généralisation au cadre des schémas DDFV. / This dissertation is dedicated to the development and analysis of finite volume numericals chemes for convection-diffusion equations, which notably occur in models arising from physics and biology. We are more particularly interested in preserving asymptotic behavior at the discrete level. This dissertation is composed of three parts, each one including two chapters. In the first part, we consider the discretization of the linear drift-diffusion system for semiconductors with the implicit Scharfetter-Gummel scheme. We focus on preserving two kinds of asymptotics with this scheme : the long-time asymptotic and the quasineutral limit. We show discrete energy–energy dissipation estimates which constitute the main point to prove first the large time convergence of the approximate solution to an approximation of the thermal equilibrium, and then the stability at the quasineutral limit. In the second part, we are interested in designing finite volume schemes which preserve the long time behavior in a more general framework. More precisely, we consider nonlinear convection-diffusion equations arising in various physical models : porous media equation, drift-diffusion system for semiconductors... We propose two spatial discretizations which preserve the long time behavior of the approximate solutions. We first generalize the Scharfetter-Gummel flux for a nonlinear diffusion. This scheme provides satisfying numerical results if the diffusion term does not degenerate. Then we propose a discretization which takes into account together the convection and diffusion terms by rewriting the flux as an advective flux. The numerical flux is then defined in such a way that equilibrium states are preserved, and we use a slope limiters method so as to obtain second order space accuracy, even in the degenerate case. Finally, the third part is devoted to the study of a numerical scheme for a chemotaxis model with cross diffusion, for which the solutions do not blow up in finite time, even for large initial data. The proof of convergence is based on a discrete entropy estimate which requires the use of discrete functional inequalities such as Poincaré-Sobolev and Gagliardo-Nirenberg-Sobolev inequalities. The demonstration of these inequalities is the subject of an independent chapter in which we propose a study in quite a general framework, including mixed boundary conditions and generalization to DDFV schemes.
2

Stabilization Schemes for Convection Dominated Scalar Problems with Different Time Discretizations in Time dependent Domains

Srivastava, Shweta January 2017 (has links) (PDF)
Problems governed by partial differential equations (PDEs) in deformable domains, t Rd; d = 2; 3; are of fundamental importance in science and engineering. They are of particular relevance in the design of many engineering systems e.g., aircrafts and bridges as well as to the analysis of several biological phenomena e.g., blood ow in arteries. However, developing numerical scheme for such problems is still very challenging even when the deformation of the boundary of domain is prescribed a priori. Possibility of excessive mesh distortion is one of the major challenge when solving such problems with numerical methods using boundary tted meshes. The arbitrary Lagrangian- Eulerian (ALE) approach is a way to overcome this difficulty. Numerical simulations of convection-dominated problems have for long been the subject to many researchers. Galerkin formulations, which yield the best approximations for differential equations with high diffusivity, tend to induce spurious oscillations in the numerical solution of convection dominated equations. Though such spurious oscillations can be avoided by adaptive meshing, which is computationally very expensive on ne grids. Alternatively, stabilization methods can be used to suppress the spurious oscillations. In this work, the considered equation is designed within the framework of ALE formulation. In the first part, Streamline Upwind Petrov-Galerkin (SUPG) finite element method with conservative ALE formulation is proposed. Further, the first order backward Euler and the second order Crank-Nicolson methods are used for the temporal discretization. It is shown that the stability of the semi-discrete (continuous in time) ALE-SUPG equation is independent of the mesh velocity, whereas the stability of the fully discrete problem is unconditionally stable for implicit Euler method and is only conditionally stable for Crank-Nicolson time discretization. Numerical results are presented to support the stability estimates and to show the influence of the SUPG stabilization parameter in a time-dependent domain. In the second part of this work, SUPG stabilization method with non-conservative ALE formulation is proposed. The implicit Euler, Crank-Nicolson and backward difference methods are used for the temporal discretization. At the discrete level in time, the ALE map influences the stability of the corresponding discrete scheme with different time discretizations, and it leads to schemes where conservative and non-conservative formulations are no longer equivalent. The stability of the fully discrete scheme, irrespective of the temporal discretization, is only conditionally stable. It is observed from numerical results that the Crank-Nicolson scheme induces high oscillations in the numerical solution compare to the implicit Euler and the backward difference time discretiza-tions. Moreover, the backward difference scheme is more sensitive to the stabilization parameter k than the other time discretizations. Further, the difference between the solutions obtained with the conservative and non-conservative ALE forms is significant when the deformation of domain is large, whereas it is negligible in domains with small deformation. Finally, the local projection stabilization (LPS) and the higher order dG time stepping scheme are studied for convection dominated problems. The analysis is based on the quadrature formula for approximating the integrals in time. We considered the exact integration in time, which is impractical to implement and the Radau quadrature in time, which can be used in practice. The stability and error estimates are shown for the mathematical basis of considered numerical scheme with both time integration methods. The numerical analysis reveals that the proposed stabilized scheme with exact integration in time is unconditionally stable, whereas Radau quadrature in time is conditionally stable with time-step restriction depending on the ALE map. The theoretical estimates are illustrated with appropriate numerical examples with distinct features. The second order dG(1) time discretization is unconditionally stable while Crank-Nicolson gives the conditional stable estimates only. The convergence order for dG(1) is two which supports the error estimate.

Page generated in 0.1606 seconds