• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Convective-Resolving Regional Climate Simulations for the Amazon Basin: Comparison with TRMM Rainfall Data

Kinney, Nichole 1987- 14 March 2013 (has links)
With increasing computational power, simulations of regional climate are now becoming possible on convective-resolving grids, thus eliminating the need for a convective parameterization. In the present study, a series of seasonal calculations using the Weather Research and Forecasting (WRF) model are computed at 4-km grid spacing, which reasonably resolves most convective systems. Simulations are computed for both the DJF and MAM seasons as averaged over 2005-2008, with a model domain covering the majority of the Amazon Basin and the adjacent South American coastline. Precipitation statistics are computed and compared to satellite rainfall retrieval data from the 13-year Tropical Rainfall Measuring Mission (TRMM) record. For comparison, a set of companion simulations with 12-km grid spacing are also computed, using the Kain-Fritsch convective parameterization. As compared to the 12-km runs, the 4-km simulations show significant improvement in the overall mean rain rate, the rain rate probability distributions, and the diurnal evolution and timing of precipitation. Both the 4-km and 12-km cases capture the coastal propagating signal and the interior basin-wide diurnal oscillation; however, the 4-km case shows better timing and evolution statistics. Compared to TRMM, the 4-km case rains too infrequently, but is more likely to produce rain events at high rain rates, thus resulting in a similar overall average rain rate. Overall, the present calculations show significant promise for computing regional rainfall patterns on convective-resolving grids.

Page generated in 0.0772 seconds