Spelling suggestions: "subject:"convergence (mathématiques)"" "subject:"convergence (athématiques)""
1 |
La récupération des dérivées : développement d'une nouvelle méthode d'estimation des dérivées avec une étude de convergencePouliot, Benoît 17 April 2018 (has links)
L'adaptation de maillage peut être très utile dans l'application de la méthode des éléments finis à certains problèmes physico-mathématiques. L'adaptation est une procédure qui nécessite, entre autres, des algorithmes efficaces de calcul des dérivées de fonctions de type Pk ou Qk- Des méthodes d'estimation des dérivées ont donc été élaborées pour résoudre ce problème. Ce travail consiste à expliquer au lecteur ce qu'est exactement la récupération des dérivées et à dresser une liste des méthodes classiques qui sont utilisées de nos jours. Nous développons aussi une nouvelle méthode de récupération pour les fonctions de type Pi qui est, à plusieurs égards, beaucoup plus performante que les méthodes classiques. Un aspect intéressant de cette nouvelle méthode est qu'elle est globale et qu'elle n'a ainsi pas besoin de traitement spécial sur le bord des maillages.
|
2 |
Étude d'une classe d'estimateurs à noyau de la densité d'une loi de probabilitéAbdous, Belkacem 23 January 2019 (has links)
Dans ce travail nous donnons un aperçu des plus intéressantes approches visant à déterminer la fenêtre optimale en estimation de la densité d’une loi de probabilité par la méthode du noyau. Nous construisons ensuite une classe d’estimateurs à noyau de la densité pour lesquels nous avons établi des conditions suffisantes de convergence uniforme presque sûre et L¹ presque sûre vers la densité à estimer f [f incliné vers la droite]. Cette classe d’estimateurs à noyau étant assez générale, elle nous a permis d’appliquer ces résultats de convergence à des estimateurs à noyau classiques comme ceux de Deheuvels (1977-a), Shanmugam (1977), Bierens (1983), et Devroye et Wagner (1983). Elle nous a permis également, de construire une famille d’estimateurs à noyau de moyenne μn et de matrice de variance-covariance Vn, où fin est un estimateur non spécifié de la moyenne de / et Vn, à une constante multiplicative près, la matrice de variance-covariance empirique. Enfin, en simulant quelques modèles univariés connus, nous avons comparé les performances de l’estimateur à noyau de Parzen-Rosenblatt avec celles de l’estimateur à noyau de variance la variance empirique et de moyenne /xn, où a été choisi comme étant la moyenne empirique X n ou bien la médiane X n ou bien la moyenne empirique a-tronquée (a = 0.1) ou bien l’estimateur de Gastwirth (1966). / Québec Université Laval, Bibliothèque 2018
|
Page generated in 0.059 seconds