Spelling suggestions: "subject:"convergence linéaire"" "subject:"konvergence linéaire""
1 |
Analysis of Randomized Adaptive Algorithms for Black-Box Continuous Constrained Optimization / Analyse d'algorithmes stochastiques adaptatifs pour l'optimisation numérique boîte-noire avec contraintesAtamna, Asma 25 January 2017 (has links)
On s'intéresse à l'étude d'algorithmes stochastiques pour l'optimisation numérique boîte-noire. Dans la première partie de cette thèse, on présente une méthodologie pour évaluer efficacement des stratégies d'adaptation du step-size dans le cas de l'optimisation boîte-noire sans contraintes. Le step-size est un paramètre important dans les algorithmes évolutionnaires tels que les stratégies d'évolution; il contrôle la diversité de la population et, de ce fait, joue un rôle déterminant dans la convergence de l'algorithme. On présente aussi les résultats empiriques de la comparaison de trois méthodes d'adaptation du step-size. Ces algorithmes sont testés sur le testbed BBOB (black-box optimization benchmarking) de la plateforme COCO (comparing continuous optimisers). Dans la deuxième partie de cette thèse, sont présentées nos contributions dans le domaine de l'optimisation boîte-noire avec contraintes. On analyse la convergence linéaire d'algorithmes stochastiques adaptatifs pour l'optimisation sous contraintes dans le cas de contraintes linéaires, gérées avec une approche Lagrangien augmenté adaptative. Pour ce faire, on étend l'analyse par chaines de Markov faite dans le cas d'optimisation sans contraintes au cas avec contraintes: pour chaque algorithme étudié, on exhibe une classe de fonctions pour laquelle il existe une chaine de Markov homogène telle que la stabilité de cette dernière implique la convergence linéaire de l'algorithme. La convergence linéaire est déduite en appliquant une loi des grands nombres pour les chaines de Markov, sous l'hypothèse de la stabilité. Dans notre cas, la stabilité est validée empiriquement. / We investigate various aspects of adaptive randomized (or stochastic) algorithms for both constrained and unconstrained black-box continuous optimization. The first part of this thesis focuses on step-size adaptation in unconstrained optimization. We first present a methodology for assessing efficiently a step-size adaptation mechanism that consists in testing a given algorithm on a minimal set of functions, each reflecting a particular difficulty that an efficient step-size adaptation algorithm should overcome. We then benchmark two step-size adaptation mechanisms on the well-known BBOB noiseless testbed and compare their performance to the one of the state-of-the-art evolution strategy (ES), CMA-ES, with cumulative step-size adaptation. In the second part of this thesis, we investigate linear convergence of a (1 + 1)-ES and a general step-size adaptive randomized algorithm on a linearly constrained optimization problem, where an adaptive augmented Lagrangian approach is used to handle the constraints. To that end, we extend the Markov chain approach used to analyze randomized algorithms for unconstrained optimization to the constrained case. We prove that when the augmented Lagrangian associated to the problem, centered at the optimum and the corresponding Lagrange multipliers, is positive homogeneous of degree 2, then for algorithms enjoying some invariance properties, there exists an underlying homogeneous Markov chain whose stability (typically positivity and Harris-recurrence) leads to linear convergence to both the optimum and the corresponding Lagrange multipliers. We deduce linear convergence under the aforementioned stability assumptions by applying a law of large numbers for Markov chains. We also present a general framework to design an augmented-Lagrangian-based adaptive randomized algorithm for constrained optimization, from an adaptive randomized algorithm for unconstrained optimization.
|
2 |
Méthode de Newton revisitée pour les équations généralisées / Newton-type methods for solving inclusionsNguyen, Van Vu 30 September 2016 (has links)
Le but de cette thèse est d'étudier la méthode de Newton pour résoudre numériquement les inclusions variationnelles, appelées aussi dans la littérature les équations généralisées. Ces problèmes engendrent en général des opérateurs multivoques. La première partie est dédiée à l'extension des approches de Kantorovich et la théorie (alpha, gamma) de Smale (connues pour les équations non-linéaires classiques) au cas des inclusions variationnelles dans les espaces de Banach. Ceci a été rendu possible grâce aux développements récents des outils de l'analyse variationnelle et non-lisse tels que la régularité métrique. La seconde partie est consacrée à l'étude de méthodes numériques de type-Newton pour les inclusions variationnelles en utilisant la différentiabilité généralisée d'applications multivoques où nous proposons de linéariser à la fois les parties univoques (lisses) et multivoques (non-lisses). Nous avons montré que, sous des hypothèses sur les données du problème ainsi que le choix du point de départ, la suite générée par la méthode de Newton converge au moins linéairement vers une solution du problème de départ. La convergence superlinéaire peut-être obtenue en imposant plus de conditions sur l'approximation multivaluée. La dernière partie de cette thèse est consacrée à l'étude des équations généralisées dans les variétés Riemaniennes à valeurs dans des espaces euclidiens. Grâce à la relation entre la structure géométrique des variétés et les applications de rétractions, nous montrons que le schéma de Newton converge localement superlinéairement vers une solution du problème. La convergence quadratique (locale et semi-locale) peut-être obtenue avec des hypothèses de régularités sur les données du problème. / This thesis is devoted to present some results in the scope of Newton-type methods applied for inclusion involving set-valued mappings. In the first part, we follow the Kantorovich's and/or Smale's approaches to study the convergence of Josephy-Newton method for generalized equation (GE) in Banach spaces. Such results can be viewed as an extension of the classical Kantorovich's theorem as well as Smale's (alpha, gamma)-theory which were stated for nonlinear equations. The second part develops an algorithm using set-valued differentiation in order to solve GE. We proved that, under some suitable conditions imposed on the input data and the choice of the starting point, the algorithm produces a sequence converging at least linearly to a solution of considering GE. Moreover, by imposing some stronger assumptions related to the approximation of set-valued part, the proposed method converges locally superlinearly. The last part deals with inclusions involving maps defined on Riemannian manifolds whose values belong to an Euclidean space. Using the relationship between the geometric structure of manifolds and the retraction maps, we show that, our scheme converges locally superlinearly to a solution of the initial problem. With some more regularity assumptions on the data involved in the problem, the quadratic convergence (local and semi-local) can be ensured.
|
Page generated in 0.442 seconds