• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Joint Eigenfunctions On The Heisenberg Group And Support Theorems On Rn

Samanta, Amit 05 1900 (has links) (PDF)
This work is concerned with two different problems in harmonic analysis, one on the Heisenberg group and other on Rn, as described in the following two paragraphs respectively. Let Hn be the (2n + 1)-dimensional Heisenberg group, and let K be a compact subgroup of U(n), such that (K, Hn) is a Gelfand pair. Also assume that the K-action on Cn is polar. We prove a Hecke-Bochner identity associated to the Gelfand pair (K, Hn). For the special case K = U(n), this was proved by Geller, giving a formula for the Weyl transform of a function f of the type f = Pg, where g is a radial function, and P a bigraded solid U(n)-harmonic polynomial. Using our general Hecke-Bochner identity we also characterize (under some conditions) joint eigenfunctions of all differential operators on Hn that are invariant under the action of K and the left action of Hn . We consider convolution equations of the type f * T = g, where f, g ε Lp(Rn) and T is a compactly supported distribution. Under natural assumptions on the zero set of the Fourier transform of T , we show that f is compactly supported, provided g is.
2

Stochastic Invariance and Stochastic Volterra Equations / Invariance stochastique et équations stochastiques de Volterra

Abi Jaber, Eduardo 18 October 2018 (has links)
La présente thèse traite de la théorie des équations stochastiques en dimension finie. Dans la première partie, nous dérivons des conditions géométriques nécessaires et suffisantes sur les coefficients d’une équation différentielle stochastique pour l’existence d’une solution contrainte à rester dans un domaine fermé, sous de faibles conditions de régularité sur les coefficients.Dans la seconde partie, nous abordons des problèmes d’existence et d’unicité d’équations de Volterra stochastiques de type convolutif. Ces équations sont en général non-Markoviennes. Nous établissons leur correspondance avec des équations en dimension infinie ce qui nous permet de les approximer par des équations différentielles stochastiques Markoviennes en dimension finie.Enfin, nous illustrons nos résultats par une application en finance mathématique, à savoir la modélisation de la volatilité rugueuse. En particulier, nous proposons un modèle à volatilité stochastique assurant un bon compromis entre flexibilité et tractabilité. / The present thesis deals with the theory of finite dimensional stochastic equations.In the first part, we derive necessary and sufficient geometric conditions on the coefficients of a stochastic differential equation for the existence of a constrained solution, under weak regularity on the coefficients. In the second part, we tackle existence and uniqueness problems of stochastic Volterra equations of convolution type. These equations are in general non-Markovian. We establish their correspondence with infinite dimensional equations which allows us to approximate them by finite dimensional stochastic differential equations of Markovian type. Finally, we illustrate our findings with an application to mathematical finance, namely rough volatility modeling. We design a stochastic volatility model with an appealing trade-off between flexibility and tractability.

Page generated in 0.141 seconds