Spelling suggestions: "subject:"convolutional beural betworks."" "subject:"convolutional beural conetworks.""
231 |
Automatická kontrola kvality výrobku z obrazu / Automatic Industrial Quality Control from ImageKruták, Martin January 2019 (has links)
The goal of this thesis is to create overall, automatic and non-contact quality control of a pellet. The issue is divided into two separate parts. The first part deals with precise dimensional measuring of pellet - its length and head diameter so that it is precise and reasonably fast. Precise measuring is achieved with help of algorithms which achieve the sub-pixel precision by polynomial approximation of the edges extracted from the image gradients. The second part deals with the defects of a pellet. Detecting defects like longitudinal furrows or skirt cuts is achieved with convolutional neural networks. The measurement modules work with the resulting precision up to 0.025 mm in case of length measuring and up to 0.01 mm in case of head diameter measuring. In case of defect detections, neural network shows very high classification success rate. The contribution of this thesis is a presentation of innovative approaches in automatic quality control of pellets with use of neural networks and a demonstration of its usage in real manufacturing process.
|
232 |
Aktivní učení pro rozpoznávání textu / Active Learning for OCRKohút, Jan January 2019 (has links)
The aim of this Master's thesis is to design methods of active learning and to experiment with datasets of historical documents. A large and diverse dataset IMPACT of more than one million lines is used for experiments. I am using neural networks to check the readability of lines and correctness of their annotations. Firstly, I compare architectures of convolutional and recurrent neural networks with bidirectional LSTM layer. Next, I study different ways of learning neural networks using methods of active learning. Mainly I use active learning to adapt neural networks to documents that the neural networks do not have in the original training dataset. Active learning is thus used for picking appropriate adaptation data. Convolutional neural networks achieve 98.6\% accuracy, recurrent neural networks achieve 99.5\% accuracy. Active learning decreases error by 26\% compared to random pick of adaptations data.
|
233 |
Restaurace obrazu konvolučními neuronovými sítěmi / Image Restoration Based on Convolutional Neural NetworksSvoboda, Pavel Unknown Date (has links)
Tématem práce je použití konvolučních neuronových sítí pro obecnou restauraci obrazu. Ta se typicky provádí za pomoci specializovaných metod pro konkrétní typ poškození. Model konvoluční sítě zde představuje jednotný přístup, který je aplikován na dva různé typy degradace obrazu, pohybem rozmazané snímky registračních značek a artefakty vznikající vysokou kompresí. Na modely konvolučních sítí je nahlíženo ze dvou úhlů. A to jak dobře si konvoluční sítě vedou v porovnání se současnými metodami pro restauraci konkrétního typu poškození a jak velký rozsah poškození je právě jeden model ještě schopen zpracovat. Klasické metody jsou charakteristické svým úzkým zaměřením na konkrétní typ poškození. Díky své specializaci tyto metody dosahují velmi dobrých výsledků a reprezentují tak dosažené poznání v oboru. Naproti tomu je představena myšlenka jednotného přístupu, tedy mapování poškozeného obrazu přímo na restaurovaný obraz. Ta je primárně ovlivněna současným vývojem konvolučních neuronových sítí a jejich hlubokého učení v počítačovém vidění. Právě učením konvoluční sítě lze jednoduše získat model zaměřený na konkrétní typ poškození. Ten je současně nezřídka schopen pokrýt širokou škálu úrovní konkrétního poškození. V práci je představena metoda přímého mapování z rozmazaného na ostrý obraz pro restauraci pohybem rozmazaných snímků. Ta je odvozena od modelů využívaných v počítačovém vidění pro sémantickou segmentaci obrazu. V případě odstranění kompresních artefaktů je tento přístup rozšířen o specifické učení modelu a různé modifikace samotné architektury sítě. Modely konvolučních sítí v porovnání s tradičními metodami dosahují kvalitativně lepších výsledků. Zároveň se zde představené modely jednoduše vypořádají s širokým rozsahem konkrétního poškození. Ukazuje se tak, že právě modely konvolučních sítí by mohly reprezentovat jednotný přístup pro restauraci různých typů poškozeni.
|
234 |
Detekce zahalených tváří v obraze / Masked face detectionMalý, Ondřej January 2020 (has links)
The aim of this work is to study and test current methods for face detection on veiled faces and evaluate the results. In the first chapter, five selected methods are theoretically analyzed and in the second chapter the individual methods are evaluated, both for the Wider Face file and for the actual set of photos with veiled faces. Subsequently, the Dlib CNN method is improved for better detection of veiled faces and reprogrammed to detect the degree of veil from the tested image
|
235 |
Mobilní aplikace pro automatický záznam šachové partie / Mobile Application for Automatic Recording of Chess GamesJiruška, Adam January 2020 (has links)
This thesis is focused on making application for mobile devices, which records progress of chess game. This is achieved by image recognition on input from camera. Chess figures are classified by neural network. Usage of application is during training or real matches to record games and then for analyzing these games. For analyzing, my application offers record in standard algebraic notation. User can also add notes to every game.
|
236 |
Mapování trajektorií pohybu chodců v záznamu pořízeným dronem / Mapping of the Pedestrian Movement Trajectory in a Video Recording Captured by a DroneŠťastný, Filip January 2020 (has links)
This master's thesis deals with pedestrian detection using neural networks in a video record captured by drone. Pedestrians are tracked, and their GPS coordinates are calculated using digital elevation models and mapped based on their identity and an information provided by the drone.
|
237 |
Re-identifikace graffiti tagů / Graffiti Tags Re-IdentificationPavlica, Jan January 2020 (has links)
This thesis focuses on the possibility of using current methods in the field of computer vision to re-identify graffiti tags. The work examines the possibility of using convolutional neural networks to re-identify graffiti tags, which are the most common type of graffiti. The work experimented with various models of convolutional neural networks, the most suitable of which was MobileNet using the triplet loss function, which managed to achieve a mAP of 36.02%.
|
238 |
Využití konvolučních neuronových sítí pro segmentaci chrupavčitých tkání myších embryí v mikro-CT datech / Utilization of convolutional neural networks for segmentation of mouse embryos cartilaginous tissue in micro-CT dataPoláková, Veronika January 2021 (has links)
Automatická segmentace biologických struktur v mikro-CT datech je stále výzvou, protože často objekt zájmu (v našem případě obličejová chrupavka) není charakterizovaný unikátním jasem či ostrými hranicemi. V posledních letech se konvoluční neuronové sítě (CNNs) staly mimořádně populárními v mnoha oblastech počítačového vidění. Konkrétně pro segmentaci biomedicínských obrazů je široce používaná architektura U-Net. Nicméně v případě mikro-CT dat vyvstává otázka, zda by nebylo výhodnější použít 3D CNN. Diplomová práce navrhla CNN architekturu založenou na síti V-Net včetně metodologie pro předzpracování a postprocessing dat. Základní architektura byla dále optimalizována pomocí pokročilých architektonických modifikací jako jsou pyramidální modul dilatovaných konvolucí (ASPP modul), škálovatelná exponenciálně-lineární jednotka (SELU aktivační funkce), víceúrovňová kontrola učení (multi-output supervision) či bloky s hustými propojeními (Dense blocks). Pro učení sítě byly použity moderní přístupy jako zahřívání kroku učení (learning rate warmup) či AdamW optimalizátor. I přes to, že 3D CNN v úloze segmentace obličejové chrupavky nepřekonala U-Net, optimalizace zvýšila medián Dice koeficientu z 69,74 % na 80,01 %. Používání těchto pokročilých architektonických modifikací v dalším výzkumu je proto vřele doporučováno, jelikož můžou být přidány do libovolné architektury typu U-Net a zároveň výrazně zlepšit výsledky.
|
239 |
Identifikace abnormálních EKG segmentů pomocí metody Multiple-Instance Learning / Identification of Abnormal ECG Segments Using Multiple-Instance LearningŠťávová, Karolína January 2021 (has links)
Heart arrhythmias are a very common heart disease whose incidence is rising. This thesis is focused on the detection of premature ventricular contractions from 12-lead ECG records by means of deep learning. The location of these arrhythmias (key instances) in the record was found using a technique based on Multiple-Instance Learning. In the theoretical part of the thesis, basic electrophysiology of the heart and deep learning with a focus on the convolutional neural networks are described. Afterward, a program was created using the Python programming language, which contains a model based on the InceptionTime architecture, using which classification of the signals into the selected classes was performed. Grad-CAM was implemented to find locations of the key instances in the ECGs. The evaluation of the arrhythmia detection quality was done using the F1 score and the results were discussed at the end of the thesis.
|
240 |
Artificial Intelligence Based Real-Time Processing of Sterile Preparations CompoundingRehman Faridi, Shah Mohammad Hamoodur January 2020 (has links)
No description available.
|
Page generated in 0.0925 seconds