• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Représentations Convolutives Parcimonieuses -- application aux signaux physiologiques et interpétabilité de l'apprentissage profond / Convolutional Sparse Representations -- application to physiological signals and interpretability for Deep Learning

Moreau, Thomas 19 December 2017 (has links)
Les représentations convolutives extraient des motifs récurrents qui aident à comprendre la structure locale dans un jeu de signaux. Elles sont adaptées pour l’analyse des signaux physiologiques, qui nécessite des visualisations mettant en avant les informations pertinentes. Ces représentations sont aussi liées aux modèles d’apprentissage profond. Dans ce manuscrit, nous décrivons des avancées algorithmiques et théoriques autour de ces modèles. Nous montrons d’abord que l’Analyse du Spectre Singulier permet de calculer efficacement une représentation convolutive. Cette représentation est dense et nous décrivons une procédure automatisée pour la rendre plus interprétable. Nous proposons ensuite un algorithme asynchrone, pour accélérer le codage parcimonieux convolutif. Notre algorithme présente une accélération super-linéaire. Dans une seconde partie, nous analysons les liens entre représentations et réseaux de neurones. Nous proposons une étape d’apprentissage supplémentaire, appelée post-entraînement, qui permet d’améliorer les performances du réseau entraîné, en s’assurant que la dernière couche soit optimale. Puis nous étudions les mécanismes qui rendent possible l’accélération du codage parcimonieux avec des réseaux de neurones. Nous montrons que cela est lié à une factorisation de la matrice de Gram du dictionnaire. Finalement, nous illustrons l’intérêt de l’utilisation des représentations convolutives pour les signaux physiologiques. L’apprentissage de dictionnaire convolutif est utilisé pour résumer des signaux de marche et le mouvement du regard est soustrait de signaux oculométriques avec l’Analyse du Spectre Singulier. / Convolutional representations extract recurrent patterns which lead to the discovery of local structures in a set of signals. They are well suited to analyze physiological signals which requires interpretable representations in order to understand the relevant information. Moreover, these representations can be linked to deep learning models, as a way to bring interpretability intheir internal representations. In this disserta tion, we describe recent advances on both computational and theoretical aspects of these models.First, we show that the Singular Spectrum Analysis can be used to compute convolutional representations. This representation is dense and we describe an automatized procedure to improve its interpretability. Also, we propose an asynchronous algorithm, called DICOD, based on greedy coordinate descent, to solve convolutional sparse coding for long signals. Our algorithm has super-linear acceleration.In a second part, we focus on the link between representations and neural networks. An extra training step for deep learning, called post-training, is introduced to boost the performances of the trained network by making sure the last layer is optimal. Then, we study the mechanisms which allow to accelerate sparse coding algorithms with neural networks. We show that it is linked to afactorization of the Gram matrix of the dictionary.Finally, we illustrate the relevance of convolutional representations for physiological signals. Convolutional dictionary learning is used to summarize human walk signals and Singular Spectrum Analysis is used to remove the gaze movement in young infant’s oculometric recordings.

Page generated in 0.1163 seconds