Spelling suggestions: "subject:"cooling."" "subject:"fooling.""
481 |
Design of medium pressure nozzles for cooling towersThacker, John Edward 05 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 1997. / One copy microfiche. / ENGLISH ABSTRACT: This project concerns the investigation of parameters controlling the behaviour of full-cone
spray nozzles of the type used in cooling towers.
In the present study large medium pressure hollow and full cone nozzles were investigated. A
literature survey provided insight into the relationships between the nozzle dimensions and
their spray characteristics, while equations found in the literature were used to correlate the
experimental data.
It was found that the spray cone angle of hollow cone nozzles could be manipulated by using
rounded orifice outlets and this finding lead to the development of a uniquely profiled outlet
that actually produces a square spray pattern.
More experimental work was done to determine the relationship between the central jet of a
full-cone nozzle and the other major nozzle dimensions. These results were then correlated and
formulated into a set of guidelines for designing full-cone nozzles. / Digitized at 300 dpi Colour PDF format (OCR), using ,KODAK i 1220 PLUS scanner. Digitised, Ricardo Davids on request from Corinna 01 October 2014 / AFRIKAANSE OPSOMMING: Hierdie projek behels 'n studie van belangrike parameters in volkegel sproeimondstukke soos
gebruik in koeltorings.
In die huidige studie word groot mediumdruk holkegel en volkegel sproeimondstukke
ondersoek. 'n Literatuurstudie het die nodige insig verskaf omtrent die verwantskap tussen
mondstuk dimensies en hul spuitkarakteristieke, terwyl vergelykings uit die literatuur gebruik is
om die eksperimentele data te korreleer.
Dit was gevind dat die sproeir kegelhoek van die holkegelmondstuk verander kon word deur
gebruik te maak van geronde uitlate. Afleidings wat gemaak is het gely tot die ontwikkeling
van 'n unieke geprofielde uitlaat wat 'n vierkantige sproeipatroon gelewer het.
Bykomstige eksperimentele werk is gedoen om die verwantskap tussen die sentralestraal van 'n
volkegelmondstuk en die ander hoof mondstukdimensies te bepaal. Die reultate is verwerk om
riglyne vir die ontwerp van vierkantige patroon volkegel mondstukke daar te stel.
|
482 |
Step IV of the muon ionization cooling experiment (MICE) and the multiple scattering of muonsCarlisle, Timothy January 2013 (has links)
The Muon Ionization Cooling Experiment (MICE) is the first technical demonstration of muon ionization cooling, using a prototype section of a Neutrino Factory cooling channel. MICE is currently under construction at the Rutherford-Appleton Laboratory in the UK and will make the first cooling measurements in 2015, in Step IV of the experimental programme. Cooling predictions in Monte Carlo simulations of Step IV were found to disagree with the predictions of the 'cooling formula', a widely-used approximation, by up to 30% in liquid hydrogen (LH2). This disagreement was shown to originate, largely, from the multiple scattering expression used in the cooling formula. It was necessary to go back to the fundamental physics of scattering to derive a more accurate expression that includes scattering from atomic electrons. A modified form of the cooling formula was derived using this expression and gave better agreement with the Monte Carlo in LH2. Predictions are given for the equilibrium emittance, using the new expression, for seven low Z materials at muon momenta of 140, 200 and 240 MeV/c. Theories which predict the distribution of multiple scattering angles are briefly reviewed, focusing on Moliere theory and its variants, which are the most widely-used theories. The distributions predicted by these theories are used in most Monte Carlo codes but their implementation is not transparent, especially regarding the treatment of scatters with atomic electrons, which are important in low Z materials. A simple Monte Carlo model to predict multiple scattering distributions was developed that correctly treats scatters off electrons. The model gives very good agreement with measurements by the MuScat Experiment. Investigations were made into the possibility of measuring multiple scattering in MICE Step IV, both with and without the magnetic field. Preliminary results suggest that measurements are easier with no magnetic field, where tracks are straight. Corrections to account for the resolution of the scintillating-fibre trackers are required in both cases, but these are substantially smaller when straight tracks are used.
|
483 |
Numerical analysis of flow around infinite and finite cylinders at trans-critical Reynolds numbers with and without surface roughnessBurger, Abri Andre Spies 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: This thesis investigates the flow field and pressure distributions around cylinders at trans-critical Reynolds numbers using the k-ε Realizable turbulence model. A steady state 2-D and 3-D Fluent® model is successfully developed to evaluate the effects of changing various modelling parameters on the static pressure distribution around an infinite and finite cylinder. These parameters include surface roughness, cylinder rotation and air viscosity at the cylinder surface. The subsequent results obtained are compared to each other and to data trends from literature as well as measured experimental results and are found to be in good agreement. In addition a method for calibrating all developed methods based on their shear stress curves over a flat plate model is also successfully developed. The main objective is to find an appropriate single parameter which can be used for the rigorous adjustment of the pressure distribution around a cooling tower, which will allow for improved sensitivity analysis and modelling of cooling tower performance under wind conditions with and without meridional ribs located on the outer shell surface. / AFRIKAANSE OPSOMMING: Hierdie tesis ondersoek die vloeiveld en druk verdelings rondom silinders by trans-kritiese Reynolds getalle deur gebruik te maak van die k-ε Realizable turbulensie model. ‘n Bestendige toestand 2-D en 3-D Fluent® model is suksesvol ontwikkel om die uitwerking van die verandering van verskeie model parameters op die statiese druk verdeling rondom ‘n oneindige en eindige silinder te evalueer. Die laasgenoemde parameters sluit in oppervlak grofheid, silinder rotasie en lug viskositeit by die silinder wand. Die daaropeenvolgende resultate wat verkry word, word met data tendense uit die literatuur asook gemete data vanuit eksperimente vergelyk en goeie ooreenkoms i.t.v die data tendense is gevind. Verder is ‘n metode vir die suksesvolle kalibrasie van die ontwikkelde numeriese tegnieke ontwikkel. Die laasgenoemde kalibrasie metode is gebaseer op die vergelyking van skuifspanning kurwes vir vloei oor ‘n plat plaat model. Die hoofdoel van die navorsing is om ‘n geskikte enkele parameter te vind wat gebruik kan word vir die effektiewe aanpassing van die druk verdeling rondom ‘n koeltoring wat sal lei tot verbeterde sensitiwiteits analise en modellering van koeltoring verrigting onder wind toestande met en sonder meridionale ribbes geleë op die buitenste dop oppervlak.
|
484 |
Resistance to airflow and moisture loss of table grapes inside multi-scale packagingNgcobo, Mduduzi Elijah Khulekani 03 1900 (has links)
Thesis (PhD(Agric))--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Postharvest quality of fresh table grapes is usually preserved through cooling using cold air. However, cooling efficiencies are affected by the multi-scale packaging that is commercially used for handling grapes after harvest. There is usually spatial temperature variability of grapes that often results in undesirable quality variations during postharvest handling and marketing. This heterogeneity of grape berry temperature inside multi-packages is largely due to uneven cold airflow patterns that are caused by airflow resistance through multi-package components. The aims of this study were therefore to conduct an in-depth experimental investigation of the contribution of grape multi-packaging components to total airflow resistance, cooling rates and patterns of grapes inside the different commercially used multi-packages, and to assess the effects of these multi-packages on table grape postharvest quality attributes. A comprehensive study of moisture loss from grapes during postharvest storage and handling, as well as a preliminary investigation of the applicability of computational fluid dynamics (CFD) modeling in predicting the transport phenomena of heat and mass transfer of grapes during cooling and cold storage in multi-packages were included in this study.
Total pressure drop through different table grapes packages were measured and the percentage contribution of each package component and the fruit bulk were determined. The liner films contributed significantly to total pressure drop for all the package combinations studied, ranging from 40.33±1.15% for micro-perforated liner film to 83.34±2.13 % for non-perforated liner film. The total pressure drop through the grape bulk (1.40±0.01 % to 9.41±1.23 %) was the least compared to the different packaging combinations with different levels of liner perforation. The cooling rates of grapes in the 4.5 kg multi-packaging were significantly (P<0.05) slower than that of grapes in 5 kg punnet multi-packaging, where the 4.5 kg box resulted in a seven-eighths cooling time of 30.30-46.14% and 12.69-25.00% more than that of open-top and clamshell punnet multi-packages, respectively. After 35 days in cold storage at -0.5°C, grape bunches in the 5 kg punnet box combination (open-top and clamshell) had weight loss of 2.01 – 3.12%, while the bunches in the 4.5 kg box combination had only 1.08% weight loss. During the investigation of the effect of different carton liners on the cooling rate and quality attributes of ‘Regal seedless’ table grapes in cold storage, the non-perforated liner films maintained relative humidity (RH) close to 100 %. This high humidity inside non-perforated liner films resulted in delayed loss of stem quality but significantly (P ≤ 0.05) increased the incidence of SO2 injury and berry drop during storage compared to perforated liners. The perforated liners improved fruit cooling rates but significantly (P ≤ 0.05) reduced RH. The low RH in perforated liners also resulted in an increase in stem dehydration and browning compared to non-perforated liners.
The moisture loss rate from grapes packed in non-perforated liner films was significantly (P<0.05) lower compared to the moisture loss rate from grapes packed in perforated liner films (120 x 2 mm and 36 x 4 mm). The effective moisture diffusivity values for stem parts packed in non-perforated liner films were lower than the values obtained for stem parts stored without packaging liners, and varied from 5.06x10-14 to 1.05x10-13 m2s-1. The dehydration rate of stem parts was inversely proportional to the size (diameter) of the stem parts. Dehydration rate of stems exposed (without liners) to circulating cold air was significantly (P<0.05) higher than the dehydration rates of stems packed in non-perforated liner film. Empirical models were successfully applied to describe the dehydration kinetics of the different parts of the stem. The potential of cold storage humidification in reducing grape stem dehydration was investigated. Humidification delayed and reduced the rate of stem dehydration and browning; however, it increased SO2 injury incidence on table grape bunches and caused wetting of the packages.
The flow phenomenon during cooling and handling of packed table grapes was also studied using a computational fluid dynamic (CFD) model and validated using experimental results. There was good agreement between measured and predicted results. The result demonstrated clearly the applicability of CFD models to determine optimum table grape packaging and cooling procedures. / AFRIKAANSE OPSOMMING: Naoes kwaliteit van vars tafeldruiwe word gewoonlik behou deur middel van verkoeling van die produk met koue lug. Ongelukkig word die effektiwiteit van dié verkoeling beïnvloed deur die multivlakverpakking wat kommersieel gebruik word vir die naoes hantering van druiwe. Daar is gewoonlik ruimtelike variasie in die temperatuur van die druiwe wat ongewenste variasie in die kwaliteit van die druiwe veroorsaak tydens naoes hantering en bemarking. Die heterogene druiwetemperature binne die multivlakverpakkings word grootliks veroorsaak deur onegalige lugvloeipatrone van die koue lug as gevolg van die weerstand wat die verskillende komponente van die multivlakverpakkings teen lugvloei bied. Die doel van hierdie studie was dus om ‘n indiepte eksperimentele ondersoek te doen om die bydrae van multivlakverpakking op totale lugvloeiweerstand, verkoelingstempo’s en –patrone van druiwe binne kommersieël gebruikte multivlakverpakkings te ondersoek, asook die effek van die multivalkverpakking op die naoes kwaliteit van druiwe te bepaal. ‘n Omvattende studie van vogverlies van druiwe tydens naoes opberging en hantering, asook ‘n voorlopige ondersoek na die bruikbaarheid van ‘n berekende vloei dinamika (BVD) model om die bewegingsfenomeen van hitte en massa oordrag van druiwe tydens verkoeling en koelopberging in multivlakverpakkings te voorspel, was ook by die studie ingesluit. Die totale drukverskil deur verskillende tafeldruif verpakkingssisteme is gemeet en die persentasie wat deur elke verpakkingskomponent en die vruglading bygedra is, is bereken. Van al die verpakkingskombinasies wat gemeet is, het die voeringfilms betekenisvol tot die totale drukverskil bygedra, en het gewissel van 40.33±1.15% vir die mikro geperforeerde voeringfilm tot 83.34±2.13 % vir die nie-geperforeerde voeringfilm. Die totale drukverskil oor die druiflading (1.40±0.01 % to 9.41±1.23 %) was die minste in vergelyking met die verskillende verpakkingskombinasies met die verskillende vlakke van voeringperforasies.
Die verkoelingstempos van die druiwe in die 4.5 kg multiverpakking was betekenisvol (P<0.05) stadiger as vir die druiwe in die 5 kg handmandjie (‘punnet’) multiverpakking. Die 4.5 kg karton het ‘n seweagstes verkoelingstyd van 30.30-46.14% en 12.69-25.00% langer, respektiewelik, as oop-vertoon en toeslaan-‘punnet’ multiverpakkings gehad. Na 35 dae van koelopberging by -0.5°C het druiwetrosse in die 5 kg ‘punnet’-kartonkombinasies (oop-vertoon en toeslaan-’punnet’) ‘n massaverlies van 2.01 – 3.12% gehad, terwyl die trosse in die 4.5 kg kartonkombinasie slegs ‘n 1.08% massaverlies gehad het.
In die ondersoek na die effek van verskillende kartonvoerings op die verkoelingstempo en kwaliteitseienskappe van ‘Regal seedless’ tafeldruiwe tydens koelopbering, het die nie-geperforeerde kartonvoerings ‘n relatiewe humiditeit (RH) van byna 100 % gehandhaaf. Hierdie hoë humiditeit in die nie-geperforeerde voeringfilms het ‘n verlies in stingelkwaliteit vertraag, maar het die voorkoms van SO2-skade en loskorrels betekenisvol (P < 0.05) verhoog in vergelyking met geperforeerde voerings. Die geperforeerde voerings het vrugverkoelingstempos verbeter, maar het die RH betekenisvol (P ≤ 0.05) verlaag. Die lae RH in die geperforeerde voerings het gelei tot ‘n verhoging in stingeluitdroging en –verbruining in vergelyking met die nie-geperforeerde voerings. Die vogverliestempo uit druiwe verpak in nie-geperforeerde voeringfilms was betekenisvol (P<0.05) stadiger in vergelyking met druiwe verpak in geperforeerde voeringfilms (120 x 2 mm and 36 x 4 mm). Die effektiewe vogdiffusiewaardes vir stingelgedeeltes verpak in nie-geperforeerde voeringfilms was stadiger as vir stingelgedeeltes wat verpak is sonder verpakkingsvoerings, en het gevarieer van 5.06x10-14 – 1.05x10-13 m2s-1. Die uitdrogingstempo van stingelgedeeltes was omgekeerd eweredig aan die grootte (deursnit) van die stingelgedeeltes. Die uitdrogingstempo van stingels wat blootgestel was (sonder voerings) aan sirkulerende koue lug was betekenisvol (P<0.05) hoër as die uitdrogingstempos van stingels wat verpak was in nie-geperforeerde voeringfilms. Empiriese modelle is gebruik om die uitdrogingskinetika van die verskillende stingelgedeeltes te beskryf.
Die potensiaal van koelkamer humidifisering in die vermindering van die uitdroging van druifstingels is ondersoek. Humidifisering het stingeluitdroging vertraag en het die tempo van stingeluitdroging en -verbruining verminder, maar dit het die voorkoms van SO2-skade op die tafeldruiftrosse verhoog en het die verpakkings laat nat word.
Die bewegingsfenomeen tydens verkoeling en hantering van verpakte tafeldruiwe is ook ondersoek deur gebruik te maak van ‘n BVD model en is bevestig met eksperimentele resultate. Daar was goeie ooreenstemming tussen gemete en voorspelde resultate. Die resultaat demonstreer duidelik die toepaslikheid van BVD-modelle om die optimum tafeldruifverpakkings- en verkoelingsprosedures te bepaal. / PPECB and Postharvest Innovation Programme (PHI-2) for their financial support
|
485 |
Regional thermal sensitivity to cold at rest and during exerciseOuzzahra, Yacine January 2012 (has links)
Thermal sensitivity has been of scientific interest for almost a century. Despite this, several research questions within this field remain unanswered, particularly regarding the specific distribution of thermal sensitivity to cold across the human body. Additionally, while exercise is known to cause a cold stimulus to be perceived as less unpleasant according to the principle of thermal alliesthesia, less has been reported on the effects of exercise on thermal sensitivity to cold. With applications mainly related to clothing insulation and design in mind, the present research project aimed to investigate thermal sensitivity to cold at whole body segments, as well as within body segments, at rest and during exercise. Additionally, a comparison of thermal sensitivity to cold between genders and between ethnic groups was also performed.
|
486 |
Optimering av pumpdrift i Skanska Deep Green Cooling / Optimization of pump operation in Skanska Deep Green CoolingKihlström, Pontus January 2016 (has links)
Skanska Deep Green Cooling is a very energy efficient system for cooling of a building. The system use deep boreholes to cool the building. In the cold part of the year, when the temperature outside is lower than the temperature out from the boreholes, the boreholes will be charged with coldness and the heat in the boreholes are used to preheat the ventilation air. The system has potential to be more energy efficient by optimization of the pumps and the pressure drop in the system. Pressure drop is crucial for the pumps power requirement. In the report two methods are theoretic tested to lowering the pressure drop to lower levels. The first method work with full open control valves and the second method work with bypass of control valves. Energy saving of the two methods are 7 percent. / Skanska Deep Green Cooling är en energieffektiv metod för kontorskyla. Metoden bygger på att nyttja kylan som finns i marken för att kyla en byggnad. Under kalla delen av året så laddas berget åter med kyla samtidigt som värmen från berget förvärmer ventilationsluften. Deep Green Cooling bygger på principen att inte krångla till det i onödan, därmed har styrsystemet upprättats så enkelt som möjligt. Kylsystemet har i dag redan en mycket god verkningsgrad, men det finns möjlighet att höja den. Denna rapport tar upp två metoder för att effektivisera driften av Deep Green Cooling. Båda metoderna går ut på att minska onödiga förluster i systemet och därmed spara energi, teoretiska beräkningar visar på ungefär 7 procent i besparing.
|
487 |
Effects of high intensity, large-scale free-stream turbulence on combustor effusion coolingMartin, Damian January 2013 (has links)
Full-coverage or effusion cooling is commonly used in the thermal management of gas turbine combustion systems. The combustor environment is characterised by highly turbulent free-stream conditions and relatively large turbulent length scales. This turbulent flow field is predominantly created by the upstream fuel injector for lean burn systems. In rich burn systems the turbulent flow field is augmented further by the addition of dilution ports. The available evidence suggests that large energetic eddies interact strongly with the injected coolant fluid and may have a significant impact on the film-cooling performance. The desire to create compact low-emission combustion systems with improved specific fuel consumption, has given rise to a desire to reduce the quantity of air used in wall cooling, and has led to the need for improved cooling correlations and validated computational methods. In order to establish a greater understanding of effusion cooling under conditions of very high free-stream turbulence, a new laboratory test facility has been created that is capable of simulating representative combustor flow conditions, and that allows for a systematic investigation of cooling performance over a range of free-stream turbulence conditions (up to 25% intensity, integral length scale-to-coolant hole diameter ratios of 26) and coolant to mainstream density ratios (??_c/??_??? ???2). This thesis describes this new test facility, including the method for generating combustor relevant flow conditions. The hot side film cooling performance of cylindrical and fanned hole effusion has been evaluated in terms of adiabatic film-cooling effectiveness and normalised heat transfer coefficient (HTC) and heat flux reduction (HFR). Infrared thermography was employed to produce spatial resolved surface temperature distributions of the effusion surface. The analysis of this data is supported by fluid temperature field measurements. The interpretation of the data has established the impact of turbulence intensity, integral length scale and density ratio on the mixing processes between free-stream and coolant flows. Elevated levels of free-stream turbulence increase the rate of mixing and degrade the cooling effectiveness at low blowing ratios whereas at high blowing ratios, where the coolant detaches from the surface, a modest increase has been observed under certain conditions; this is due to the turbulent transport of the detached coolant fluid back towards the wall. For angled cylindrical hole injection the impact of density ratio as an independent parameter was found to be relatively weak. Adiabatic effectiveness data gathered at DR's of 1 - 1.4 scaled reasonable well when plotted against momentum flux ratio. This suggests data collected at low DR's can be scaled to engine representative DR's. The investigation of shaped cooling holes found fanned effusion has the potential to dramatically improve film effectiveness. The diffusion of the flow through a fanned exit prevented jet detachment at blowing ratios up to 5, increasing spatially averaged effectiveness by 89%.
|
488 |
Internal crossflow effects on turbine airfoil film cooling adiabatic effectiveness with compound angle round holesKlavetter, Sean Robert 07 October 2014 (has links)
Internal crossflow is an important element to actual gas turbine blade cooling; however, there are very few studies in open literature that have documented its effects on turbine blade film cooling. Experiments measuring adiabatic effectiveness were conducted to investigate the effects of perpendicular crossflow on a row of 45 degree compound angle, cylindrical film cooling holes. Tests included a standard plenum condition, a baseline crossflow case consisting of a smooth-walled channel, and various crossflow configurations with ribs. The ribs were angled to the direction of prevailing internal crossflow at 45 and 135 degrees and were positioned at different locations. Experiments were conducted at a density ratio of DR=1.5 for a range of blowing ratios including M=0.5, 0.75, 1.0, 1.5, and 2.0. Results showed that internal crossflow can significantly influence adiabatic effectiveness when compared to the standard plenum condition. The implementation of ribs generally decreased the adiabatic effectiveness when compared to the smooth-walled crossflow case. The highest adiabatic effectiveness measurements were recorded for the smooth-walled case in which crossflow was directed against the spanwise hole orientation angle. Tests indicated that the direction of perpendicular crossflow in relation to the hole orientation can significantly influence the adiabatic effectiveness. Among the rib crossflow tests, rib configurations that directed the coolant forward in the direction of the mainstream resulted in higher adiabatic effectiveness measurements. However, no other parameters could consistently be identified correlating to increased film cooling performance. It is likely that a combination of factors are responsible for influencing performance, including internal local pressure caused by the ribs, the internal channel flow field, jet exit velocity profiles, and in-hole vortices. / text
|
489 |
Evaluation of Dietary Niacin and Supplemental Cooling for Alleviation of Heat Stress in Lactating Dairy CowsRungruang, Sunthorn January 2012 (has links)
Four studies were conducted to evaluate the effects of supplemental cooling and niacin on heat stress (HS) responses in vivo and in vitro in lactating dairy cows. For experiment one, lactating dairy cows were fed four levels of dietary niacin, NIASHURE® (0,4,8,12 g/d) for 21 d. Heat stress decreased niacin levels in whole blood, red blood cells and plasma as compared to thermoneutral. Water intake, plasma and milk niacin concentrations increased linearly with increasing dietary niacin in HS cattle. In thermoneutral, but not HS cows, niacin increased skin temperature compared to controls suggesting niacin increased skin blood flow and sensible heat loss. In experiment 2, lactating cows were used to evaluate the impact of feed-line soaking (FLS) combined with niacin supplementation. In evaporative cooled barns, FLS reduced body temperatures; however the addition of niacin did not improve heat status of these cows. For experiment 3, 200 lactating dairy cows were used to determine the effects of conductively cooled bedding (CC) compared to feed-line soaking with fans (FLSF). Conductively cooled bedding can reduce skin and vaginal temperatures in cows after nighttime rest. However, FLSF were more effective in decreasing body temperature, as cows had lower heat parameter indices, higher milk yield and longer rest time. For experiment 4, three cell types were used to evaluate niacin in vitro. Niacin induced heat shock proteins (HSP) that protected cells during HS in transformed bovine mammary epithelial cells but not in primary bovine mammary epithelial cells (BMEC) or bovine endometrial cells (BEND). Effect of niacin on HSP may depend on enzymes involved in DNA-binding activity of heat shock factor 1. These results suggest that niacin may be involved in whole body metabolism during heat stress and is cell dependent. We did not find dietary niacin to be commercially efficacious in treating HS in cows. Further research is warranted to improve efficacy of CC and FLSF under high temperature humidity index conditions.
|
490 |
Optical lattices for ultra-cold atomsMorsch, Oliver January 1999 (has links)
No description available.
|
Page generated in 0.1039 seconds