Spelling suggestions: "subject:"popula 2analysis"" "subject:"popula 3analysis""
1 |
A Methodology for Assessment of Spatial Distribution of Flood Risk / 洪水災害リスクの空間分布の評価に関する方法論的研究Jiang, Xinyu 24 September 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第18620号 / 情博第544号 / 新制||情||96(附属図書館) / 31520 / 京都大学大学院情報学研究科社会情報学専攻 / (主査)教授 多々納 裕一, 教授 矢守 克也, 教授 堀 智晴 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
2 |
Signal processing methods for cerebral autoregulationRowley, Alexander January 2008 (has links)
Cerebral autoregulation describes the clinically observed phenomenon that cerebral blood flow remains relatively constant in healthy human subjects despite large systemic changes in blood pressure, dissolved blood gas concentrations, heart rate and other systemic variables. Cerebral autoregulation is known to be impaired post ischaemic stroke, after severe head injury, in patients suffering from autonomic dysfunction and under the action of various drugs. Cerebral auto-regulation is a dynamic, multivariate phenomenon. Sensitive techniques are required to monitor cerebral auto-regulation in a clinical setting. This thesis presents 4 related signal processing studies of cerebral autoregulation. The first study shows how consideration of changes in blood gas concentrations simultaneously with changes in blood pressure can improve the accuracy of an existing frequency domain technique for monitoring cerebral autoregulation from spontaneous fluctuations in blood pressure and a transcranial doppler measure of cerebral blood flow velocity. The second study shows how the continuous wavelet transform can be used to investigate coupling between blood pressure and near infrared spectroscopy measures of cerebral haemodynamics in patients with autonomic failure. This introduces time information into the frequency based assessment, however neglects the contribution of blood gas concentrations. The third study shows how this limitation can be resolved by introducing a new time-varying multivariate system identification algorithm based around the dual tree undecimated wavelet transform. All frequency and time-frequency domain methods of monitoring cerebral autoregulation assume linear coupling between the variables under consideration. The fourth study therefore considers nonlinear techniques of monitoring cerebral autoregulation, and illustrates some of the difficulties inherent in this form of analysis. The general approach taken in this thesis is to formulate a simple system model; usually in the form of an ODE or a stochastic process. The form of the model is adapted to encapsulate a hypothesis about features of cerebral autoregulation, particularly those features that may be difficult to recover using existing methods of analysis. The performance of the proposed method of analysis is then evaluated under these conditions. After this testing, the techniques are then applied to data provided by the Laboratory of Human Cerebrovascular Physiology in Alberta, Canada, and the National Hospital for Neurology and Neurosurgery in London, UK.
|
3 |
Copula theory and its applications in computer networksDong, Fang 12 July 2017 (has links)
Traffic modeling in computer networks has been researched for decades. A good model should reflect the features of real-world network traffic. With a good model, synthetic traffic data can be generated for experimental studies; network performance can be analysed mathematically; service provisioning and scheduling can be designed aligning with traffic changes. An important part of traffic modeling is to capture the dependence, either the dependence among different traffic flows or the temporal dependence within the same traffic flow. Nevertheless, the power of dependence models, especially those that capture the functional dependence, has not been fully explored in the domain of computer networks. This thesis studies copula theory, a theory to describe dependence between random variables, and applies it for better performance evaluation and network resource provisioning. We apply copula to model both contemporaneous dependence between traffic flows and temporal dependence within the same flow. The dependence models are powerful and capture the functional dependence beyond the linear scope. With numerical examples, real-world experiments and simulations, we show that copula modeling can benefit many applications in computer networks, including, for example, tightening performance bounds in statistical network calculus, capturing full dependence structure in Markov Modulated Poisson Process (MMPP), MMPP parameter estimation, and predictive resource provisioning for cloud-based composite services. / Graduate / 0984 / fdong@uvic.ca
|
Page generated in 0.0521 seconds