• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Case studies in coral restoration: assessing life history and longterm survival patterns in restoration outplants of Acropora cervicornis (Staghorn Coral) and Acropora palmata (Elkhorn Coral) in the Florida Keys and Belize

Garfield, Eliza Newell 23 November 2016 (has links)
This thesis is composed of two articles. The first is an analysis of long-term survival among A. cervicornis outplants in the Florida Keys, from 2007 to the present. The second is a review of literature that informs coral restoration and guides both restoration practitioners and coral researchers towards greater effectiveness in outplant survival and understanding biological processes involved in restoration. In the first article, despite promising initial evidence of outplant survival and health, the long-term results, using Weibull survival analysis, are discouraging with almost all out planted corals over an 8 year long study exhibiting steep declines in percent live tissue and survival between three and five years. Not only is this 3-5 year collapse apparent in all the outplanted cohorts, but the evidence is highly significant that the length of outplant survival is decreasing with each passing year (diminished resilience). These findings suggest that some shared, likely environmental factor, is increasingly impacting all outplants. Further, no cohorts appear to adapt to the environmental conditions in which these declines are occurring (diminished adaptive capacity), a trend that would be evident if their declines slowed or reversed and Weibull beta-parameterization would show. The second article, reviews several areas of recent study which offer avenues for future research: these include, ecological history and biogeography, developmental pathways of colonial form and function, polarity and symmetry, genetics, wound healing, fecundity, reproduction, sexual maturity and community interactions. The thesis concludes with questions for further research and understanding in the field of coral restoration.
2

Translocation of Acropora cervicornis Across Geographic Regions: Investigating Species Recovery and Restoration

Bliss, Bradley Cody 01 January 2015 (has links)
This thesis is the first known study to relocate Acropora cervicornis across multiple regions of the Florida Reef Tract. Since 2006, A. cervicornis has been listed as a threatened coral species under the U.S. Endangered Species Act. In response, restoration efforts utilizing coral nursery methods have been implemented throughout the Caribbean. The primary objective of this research was to determine the response of A. cervicornis colonies to being relocated between two coral nurseries separated by approximately 150km along the Florida Reef Tract. To accomplish this, a reciprocal transport was conducted between coral fragments with known genotypes from Broward County and Monroe County, Florida. A subset of coral ramets (fragments of a single genotype) was removed from the nursery of origin and relocated to the opposing coral nursery, while the remaining ramets stayed in their original nursery to serve as controls. Following transplant, both relocated and non-relocated corals were monitored for 14 months and survivorship, growth rates, branching frequency, and coral condition data were collected. In addition, tissue samples were collected twice during the monitoring period to determine zooxanthellae densities. Reaction norms were used to predict the responses of each measured variable for each genotype in response to being relocated. Relocated coral colonies from both nurseries exhibited equal or greater survivorship than the non-relocated corals from their original nursery. Growth rates, branching frequency, and zooxanthellae densities were highest in the corals that were previously in or relocated to Broward County. Within each nursery, relocated and non-relocated corals were not significantly different in any of the measured parameters. Throughout the study period, there were no signs of disease, bleaching, or predation on any of the corals. These findings demonstrate that A. cervicornis colonies can be successfully relocated across regions of the Florida Reef Tract suggesting that colonies throughout the FRT may be used for collaborative restoration efforts. Reaction norm analysis indicated phenotypically plastic responses in each growth parameter with some instances of genotype-by-environment interactions. Finally, these results suggest the need for additional research to investigate regional differences in A. cervicornis populations for proper management and restoration approaches.
3

Genomic Analysis of Acropora cervicornis Mucus and Sediments in the Florida Keys Tavernier Nursery

Zimmerman, Rachel 13 August 2018 (has links)
White Band disease has devastated the staghorn coral Acropora cervicornis in recent decades, and it continues to impinge upon restoration efforts. The etiological agent(s) remain unknown as Koch’s postulates have yet to be satisfied, but disease may originate when opportunistic pathogens in the surface mucus layer exploit a stressed host. Using 16s rRNA sequencing, differences in the taxonomic diversity and relative abundances of bacteria within the mucus of A. cervicornis were documented between colonies of the same genotype, genotypes (n=8) categorized as having either high or low WBD susceptibility, and during a transplantation event. A. cervicornis colonies suspended from midwater PVC trees via monofilament were sampled for mucus, after which half of the sampled colonies were relocated to the unconsolidated sediments below. Temporal changes in the microbiome of the pelagic and benthic corals were then monitored by sampling the same apical tip over time. Incidentally, all benthic colonies for this experiment became afflicted with WBD; thereby differences in healthy vs. diseased colonies and the effects of disease progression on the microbiome were documented. Water was sampled concurrently with all mucus experiments to resolve the degree of commonality in bacterial species between the two environments, and sediments were sampled in the transplant experiment to determine if sediments may act as a pathogen reservoir. In addition, sediment samples were collected to assess site and temporal differences in the benthic microbiome along a nearshore to offshore transect off Key Largo, Florida. Irrespective of the inclusion of water operational taxonomic units (OTUs), no differences between colonies of the same genotype were observed with regards to the bacterial communities sampled from mucus in either alpha diversity metrics [species richness, Shannon, Inverse Simpson] or phylogenetic relatedness as determined by weighted unique fraction (UniFrac) were detected between colonies. However, differences were observed in the Bray-Curtis dissimiliarity matrices based on relative abundance and presence/absence of either [with and without water OTU] scenarios. Bacterial communities associated with different coral genotypes differed in species richness and Inverse Simpson in both water scenarios, as did weighted UniFrac and Bray-Curtis relative abundance and presence/absence transformed dissimilarity matrices. Alpha diversity of mucus bacteria was similar between corals of different disease-susceptibilities when water OTUs were either included or excluded, except for the Inverse Simpson index upon removal of water OTUs. Removal of aqueous bacteria also revealed significant differences between disease-susceptibility groups in Bray-Curtis relative abundance and presence/absence dissimiliarity values that was not detected with the incorporation of water OTUs. Regardless of the presence of water OTUs, weighted UniFrac was similar between corals of different disease susceptibilities. Most notably, dispersion increased in the microbiome of coral genotypes with high disease susceptibility in all cases except for the relative abundance transformed Bray-Curtis dissimilarity matrix when water OTUs were incorporated. This finding is in accordance with the Anna Karenina Principle, which states that loss of microbial regulation leads to an unpredictable microbiome in diseased individuals. In the sediment experiment, location was the only factor influencing microbiome composition. These findings may be due to the short duration of the experiment and differences between the carbonate content of the sediments and hydrological regimes between sites.
4

Assessment of Nursery-Raised Acropora cervicornis Transplants in the Upper Florida Keys

Ware, Matthew 01 July 2015 (has links)
Over the last 40 years, the Caribbean has lost half of its live coral cover, mostly in the form of Acropora cervicornis and A. palmata, due to disease, bleaching from rising water temperatures, and other stressors. To help restore these corals to reefs in Florida, the Coral Restoration Foundation (CRF) created nearshore nurseries and transplanted over 30,000 acroporid colonies across the Florida Keys. The objective of this thesis was to evaluate the growth, survivorship, and condition of nursery-raised A. cervicornis colonies that were part of two transplant projects: 1) photographic analyses of 17 past CRF transplant projects over the last seven years; and 2) a transplant experiment at Little Conch Reef to additionally assess the effects of depth, colony density, and the genetic composition of transplants. The photographic analyses included 2,428 individual colonies, 38 genotypes, and six reefs from 2007 to 2013. Results from the photographs were combined with one in situ monitoring effort that used SCUBA in 2014. In the Little Conch Reef experiment, 1,288 colonies from 14 genotypes were transplanted in October and November, 2013 at two depths (5m and 12m) in either cluster or thicket configurations. At each depth, clusters comprised 14 colonies, each placed within in 1m diameter radius, with ten monogenetic and six multigenetic structures. Thickets were 3.5m by 1.5m in size, with 10 colonies from each genotype forming its own subunit within the larger configuration. In June 2014, 963 additional colonies were added to the shallow site by stacking them on top of six existing clusters and one thicket to evaluate whether larger three-dimensional structures affected growth or survival. The Little Conch Reef experiment was monitored through January 2015. Results from the photographic analyses were: 1) maximum size of A. cervicornis transplants was approximately 40cm in diameter; 2) mortality increased after approximately two years; 3) despite high mortality, some colonies survived the duration of each project; and 4) frequent and long-term monitoring is required to assess factors that affect survival and condition. Results from the Little Conch Reef experiment suggest: 1) maximum skeletal diameter was unaffected by any of the treatments; 2) percent survival and percent live tissue were higher at the shallow site compared to the deep site, and similarly, the clusters outperformed the thickets, and multigenetic clusters outperformed their monogenetic counterparts; 3) location within the shallow site had an impact on survival and condition, with clusters doing better on the south side than on the north; and 4) stacking did not positively impact growth, survival, or condition. In general, the sizes and condition of natural populations of A. cervicornis throughout the Florida Keys are similar to results from both experiments and with other transplant projects conducted in the Caribbean. Remarkably, despite high mortality in nearly all of the projects, small numbers of colonies transplanted for most projects, a few colonies survived to 2014/2015. These colonies have the potential to act as a “seed population” that might produce sexually dispersed larvae better adapted at surviving mortality events and asexual fragments that may be better acclimated to the stressors related to their location. Evidence of persistence in this species and expansion northward in Florida suggest that it is too early to consider coral reefs a lost cause, and that coral restoration holds promise for enhancing recovery of A. cervicornis.
5

Using Structure-from-Motion Technology to Compare Coral Coverage on Restored vs. Unrestored Reefs

Rosing, Trina 17 June 2021 (has links)
No description available.

Page generated in 0.1358 seconds