Spelling suggestions: "subject:"moral ref fishes -- cology -- bahamas"" "subject:"moral ref fishes -- cology -- bahama’s""
1 |
Population dynamics of coral-reef fishes : spatial variation in emigration, mortality, and predationOverholtzer-McLeod, Karen L. 09 June 2003 (has links)
Understanding the dynamics of open marine populations is difficult.
Ecological processes may vary with the spatial structure of the habitat, and this
variation may subsequently affect demographic rates. In a series of observational
and experimental studies in the Bahamas, I examined the roles of emigration,
mortality, and predation in the local population dynamics of juvenile coral-reef
fishes. First, I documented mortality and emigration rates in populations of
bluehead and yellowhead wrasse. Assuming that all losses were due solely to
mortality would have significantly underestimated survivorship for both species on
patch reefs, and for yellowheads on continuous reefs. Mortality differed between
species, but emigration did not differ between species or reef types. Mortality of
blueheads was density-dependent with respect to both conspecific density and total
wrasse density on continuous reefs. In contrast, mortality of yellowheads varied
inversely with the density of blueheads on patch reefs. Emigration rates varied
inversely with distance to the nearest reef inhabited by conspecifics. In subsequent
experiments, I manipulated densities of yellowhead wrasse and beaugregory
damselfish, and determined that the relationship between density and mortality
varied with reef spatial structure. On natural reefs, mortality rates of the wrasse
were highly variable among reefs. On artificial reefs, mortality rates of both
species were density-dependent on spatially isolated reefs, yet high and density-independent
on aggregated reefs. Heterogeneity in the spatial structure of natural
reefs likely caused variation in predation risk that resulted in high variability in
mortality rates compared to artificial reefs. A final experiment demonstrated that a
single resident predator caused substantial mortality of the damselfish, regardless of
reef spacing. Patterns suggested that resident predators caused density-dependent
mortality in their prey through a type 3 functional response on all reefs, but on
aggregated reefs this density dependence was overwhelmed by high, density-independent
mortality caused by transient predators. These results (1) suggest
post-settlement movement should be better documented in reef-fish experiments,
(2) demonstrate that the role of early post-settlement processes, such as predation,
can be modified by the spatial structure of the habitat, and (3) have ramifications
for the implementation of marine reserves. / Graduation date: 2004
|
2 |
Factors affecting the dynamics and regulation of coral-reef fish populationsWebster, Michael Scott 11 September 2001 (has links)
Ecologists have long questioned why fluctuating populations tend to persist
rather than go extinct. Populations that persist indefinitely are regulated by
mechanisms that cause demographic density dependence, which works to bound
fluctuation above zero. In a series of studies, I have sought to determine the processes
and mechanisms that regulate local populations of coral-reef fish. In the Exuma Keys,
Bahamas, fairy basslets (Gramma loreto) live in aggregations on the undersides of
coral-reef ledges. These aggregations often constitute local populations because
movement between aggregations is rare. The largest individuals occupy prime feeding
positions near the front of ledges and force smaller individuals remain near the back
where they have lower feeding rates. Based on these initial observations, I designed
two experimental studies of the demographic consequences of variation in basslet
density. In the first study, I manipulated the density of newly-settled fish to explore the
effects of high recruitment on population size. Populations with experimentally
elevated recruitment converged in density with unmanipulated populations, primarily
due to density-dependent mortality. I found no evidence that density dependence was
caused by intraspecific competition; rather it appeared to be due to a short-term
behavioral response by predators (aggregative and/or type 3 functional response). In a
second study, I manipulated the densities of adults among populations with a standard
average density of newly-settled fish. Two measures indicated that the intensity of
competition increased at higher densities of adults, which likely made small fish more
susceptible to predation, thereby causing density-dependent mortality. Long-term
observations indicated that basslet populations were regulated at temporal scales
exceeding two generations. At Lizard Island on the Great Barrier Reef, I also
examined how patterns of recruitment of coral-reef fishes were modified across a range
of natural recruit densities in the presence and absence of resident predators. Predators
decreased recruitment and increased mortality for all species, but these effects varied
considerably among species. The results of each of these studies stress the importance
of both competitive and predatory mechanisms in modifying patterns of abundance
established at the time of larval settlement, as well as regulating local population size. / Graduation date: 2002
|
Page generated in 0.1008 seconds