Spelling suggestions: "subject:"more 2analysis"" "subject:"more 3analysis""
11 |
Pharos : pluri-director, high-resolution, analyser of radiometric properties of soil cores.Pitout, Richard. January 2001 (has links)
The core-logger has been designed for the high-resolution radiometric analysis of soil
cores using multiple detectors. This device allows for the automation of the
measuring process and eliminates the need to dissect the cores. The design is aimed
at measuring soil-cores with a 10cm radius and a length of 1m and allows for up to 4
detectors to be mounted on the measuring platform. Currently a combination of
Bismuth-German.te (BGO) and C.esiwn-Iodide (CsI) detectors are used.
The core logger required a good spatial resolution of - 1 cm. This has been difficult to
obtain and has required extensive investigation. The shielding configurations were
varied and the effect of background radiation was looked at in detail to determine an
optimal construction. A secondary objective has been the complete measurement of a
single core in 24 hours. This has also been difficult to achieve because the low
activity of natural radiation in the core samples needs longer measuring times. The
BGO detectors were used as a more efficient detector (than, e.g. CsI) which helped to
reduce the required measuring time.
Measured spectra have been analysed to determine the activity concentrations of the
specific radionuclides of interest: 232Th, 238U, 40K and 137Cs. These activity profiles of
the measured cores provide information that can then be used to radiometrically
fingerprint the sample to determine soil characteristics such as grain size and mineral
content. However, because the actual resolution of the system ( ~3cm) is greater than
the typical core slice (~ 2cm), the radiometric information in a specific core-slice
contains contributions from its adjacent slices. This folding or convolution of the
measured spectra can be undone using a deconvolution method. which was examined
and commented on. / Thesis (M.Sc.)-University of Natal, Durban, 2001.
|
12 |
NMR studies of enhanced oil recovery core floods and core analysis protocolsBush, Isabelle January 2019 (has links)
With conventional oil reserves in decline, energy companies are increasingly turning to enhanced oil recovery (EOR) processes to extend the productive life of oilfield wells. Laboratory-scale core floods, in which one fluid displaces another from the pore space of a rock core, are widely used in petroleum research for oilfield evaluation and screening EOR processes. Achieving both macro- and pore-scale understandings of such fluid displacement processes is central to being able to optimise EOR strategies. Many of the mechanisms at play, however, are still poorly understood. In this thesis nuclear magnetic resonance (NMR) has been used for quantitatively, non-invasively and dynamically studying laboratory core floods at reservoir-representative conditions. Spatially-resolved relaxation time measurements (L-T1-T2) have been applied to studying a special core analysis laboratory (SCAL) protocol, used for simulating reservoir oil saturations following initial oil migration (primary drainage) and characterising core samples (capillary pressure curves). Axial heterogeneities in pore filling processes were revealed. It was demonstrated that upon approaching irreducible water saturation, brine saturation was reduced to a continuous water-wetting film throughout the pore space; further hydrocarbon injection resulted in pore pressure rise and wetting film thinning. L-T1-T2 techniques were also applied to a xanthan gum polymer-EOR flood in a sandstone core, providing a continuous measurement of core saturation and pore filling behaviours. A total recovery of 56.1% of the original oil in place (OOIP) was achieved, of which 4.9% was from xanthan. It was demonstrated that deposition of xanthan debris in small pores resulted in small-pore blocking, diverting brine to larger pores, enabling greater oil displacement therein. L-T1-T2, spectral and pulsed field gradient (PFG) approaches were applied to a hydrolysed polyacrylamide (HPAM)-EOR flood in a sandstone core. A total recovery of 62.4% of OOIP was achieved, of which 4.3% was from HPAM. Continued brine injection following conventional recovery (waterflooding) and EOR procedures demonstrated most moveable fluid saturation pertained to brine, with a small fraction to hydrocarbon. Increases in residual oil ganglia size was demonstrated following HPAM-EOR, suggesting HPAM encourages ganglia coalescence, supporting the "oil thread/column stabilisation" mechanism proposed in the literature. NMR relaxometry techniques used for assessing surface interaction strengths (T1/T¬2) were benchmarked against an industry-standard SCAL wettability measurement (Amott-Harvey) on a water-wet sandstone at magnetic field strengths comparable to reservoir well-logging tools (WLTs). At 2 MHz, T1/T2 was demonstrated to be weakly sensitive to the core wettability, although yielded wettability information at premature stages of the Amott-Harvey cycle. This suggests the potential for NMR to deliver faster wettability measurements, in SCAL applications or downhole WLT in situ reservoir characterisation.
|
13 |
Monte Carlo model of a capture gamma ray analyzer for a seafloor core sampleAlmasoumi, Abdullah Muhammad Sultan 06 December 1989 (has links)
Of great benefit, but not limited to seafloor mineral
exploration, is a technique that fairly rapidly determines the
composition of a drilled vibracore (in a time comparable to the time
involved in obtaining the core). The rapid assessment is desired to
predict whether a given region warrants further exploration by
coring.
A proposed monitoring system, based on neutron capture gamma
ray analysis, consists of a container tank filled with water and
tubular extensions that house a Cf-252 neutron source and a
detector positioned within the tank. The core sample is passed
through the system in stop and count steps. The net count rates, due
to "signature" capture gamma rays from neutron capture in elements
in the core sample, are proportional to the amount of the element
responsible for emitting the capture gamma ray.
The proposed system was modeled and simulated by the Monte Carlo
method to predict the relationship between the response of the
detector and the elemental concentrations within the sample.
Accurate and detailed treatment of neutron transport and gamma ray
production and attenuation within the system were employed not only
to predict the relationship of the photopeak responses with respect
to elemental concentrations, but also to permit investigation of the
design parameters and structural material changes in the system.
The developed Monte Carlo code utilizes a variety of variance
reduction techniques, such as implicit absorption with Russian
Roulette and deterministic production of the gamma rays of interest,
along with a form of correlated sampling to predict simultaneously
the responses over a range of interest of the elemental
concentrations. The predicted results were compared with predictions
obtained from a well established general purpose Monte Carlo code
(MCNP). / Graduation date: 1990
|
14 |
Assessment Of Reservoir Rock And Fluid Data For Black Oil SimulationSusuz, Onur 01 February 2010 (has links) (PDF)
Reservoir simulation studies are one of the key tools in an integrated reservoir management study. A successful reservoir simulation application requires representative input data for reservoir rock and fluid properties. This study aims to develop a road map from laboratory measurements to the input data file of reservoir simulation and to make a probabilistic approach for the estimation of unknown parameters. Raw data of reservoir rock and fluid properties of a selected oil field of Turkey will be interpreted and prepared in a way that they will be used as input data of a simulator.
|
15 |
Monte Carlo design and simulation of a shipboard ²⁵²Cf-based PGNAA analyzer for the sensitivity analysis of seafloor coresAnand, Ajay, 1961- 14 May 1991 (has links)
The seabed is envisaged to meet the increased future demands for
minerals from the rapidly growing industrialized societies of the world.
Shipboard analysis of cores can significantly reduce the cost and time
spent at the exploratory drilling stage by obviating the need to go back
to land for analysis. It can further speed the exploration process by
enabling a quick modification of the exploration plan based on the
results of the shipboard analysis.
A ²⁵²Cf-based analyzer utilizing the prompt gamma neutron
activation analysis technique has been designed. The analyzer is a
spherical iron shell with the source at its center. The seabed core is
passed through a hollow composite tube which is positioned a short
distance directly below the source and the resulting prompt gamma rays
are collimated to a HPGe detector. The rest of the sphere is filled
with paraffin. The gamma ray flux at the detector is converted into a
count rate by using a semi-empirical detector response function. This
count rate data are then used to determine the sensitivity and detection
limits for the chosen elements (Mg, Al, Ti, Cr, Mn, Fe, Ni and Cu).
Monte Carlo simulations using the Monte Carlo neutron photon
coupled transport code, MCNP, were carried out for a parametric study of
important variables influencing the design of the analyzer. These
parameters included the moderator type, source to sample distance and
sample porosity. MCNP was then used to model the analyzer and to
generate the neutron flux profiles in the sample and the prompt gamma
flux at the detector.
Due to the non-availability of the prompt gamma data for most of
the elements of economic interest in the ENDF/B-V cross section
libraries associated with MCNP, the point kernel photon transport code
ISOSHLD-II (modified for high energy gamma rays) was used to generate
the gamma flux at the detector for specific elements. The ISOSHLD-II
source term was calculated based on known gamma production data (thermal
capture only) and the thermal neutron flux in the sample obtained from
MCNP computations.
The sensitivity and detection limits obtained from the isotopic
source based analyzer were compared for the case of aluminum with values
reported from reactor facilities.
The results obtained indicate that the analyzer designed in this
work could prove suitable for the on-line analysis of many elements of
economic interest in seabed cores at the 1 weight percent level. / Graduation date: 1992
|
16 |
Geologic history of the abyssal benthos evidence from trace fossils in Deep Sea Drilling Project cores /Ekdale, Allan A. January 1974 (has links)
Thesis (Ph. D.)--Rice University, 1974. / Includes bibliographical references (leaves 112-125).
|
17 |
Depositional and diagenetic controls on reservoir quality and their petrophysical predictors within the Upper Cretaceous (Cenomanian) Doe Creek Member of the Kaskapau Formation at Valhalla Field, Northwest AlbertaBall, Nathaniel H. Atchley, Stacy C. January 2009 (has links)
Thesis (M.S.)--Baylor University, 2009. / Superscript: 6 and 3 in "106m3". Includes bibliographical references (p. 170-175).
|
18 |
A 1700-year history of fire and vegetation in pine rocklands of National Key Deer Refuge, Big Pine Key, Florida charcoal and pollen evidence from Key Deer Pond /Albritton, Joshua Wright. January 2009 (has links)
Thesis (M.S.)--University of Tennessee, Knoxville, 2009. / Title from title page screen (viewed on Mar. 11, 2010). Thesis advisor: Sally P. Horn. Vita. Includes bibliographical references.
|
19 |
Numerical Modeling of Hydraulic Fracture Propagation Using Thermo-hydro-mechanical Analysis with Brittle Damage Model by Finite Element MethodMin, Kyoung 16 December 2013 (has links)
Better understanding and control of crack growth direction during hydraulic fracturing are essential for enhancing productivity of geothermal and petroleum reservoirs. Structural analysis of fracture propagation and impact on fluid flow is a challenging issue because of the complexity of rock properties and physical aspects of rock failure and fracture growth. Realistic interpretation of the complex interactions between rock deformation, fluid flow, heat transfer, and fracture propagation induced by fluid injection is important for fracture network design. In this work, numerical models are developed to simulate rock failure and hydraulic fracture propagation. The influences of rock deformation, fluid flow, and heat transfer on fracturing processes are studied using a coupled thermo-hydro-mechanical (THM) analysis.
The models are used to simulate microscopic and macroscopic fracture behaviors of laboratory-scale uniaxial and triaxial experiments on rock using an elastic/brittle damage model considering a stochastic heterogeneity distribution. The constitutive modeling by the energy release rate-based damage evolution allows characterizing brittle rock failure and strength degradation. This approach is then used to simulate the sequential process of heterogeneous rock failures from the initiation of microcracks to the growth of macrocracks. The hydraulic fracturing path, especially for fractures emanating from inclined wellbores and closed natural fractures, often involves mixed mode fracture propagation. Especially, when the fracture is inclined in a 3D stress field, the propagation cannot be modeled using 2D fracture models. Hence, 2D/3D mixed-modes fracture growth from an initially embedded circular crack is studied using the damage mechanics approach implemented in a finite element method.
As a practical problem, hydraulic fracturing stimulation often involves fluid pressure change caused by injected fracturing fluid, fluid leakoff, and fracture propagation with brittle rock behavior and stress heterogeneities. In this dissertation, hydraulic fracture propagation is simulated using a coupled fluid flow/diffusion and rock deformation analysis. Later THM analysis is also carried out. The hydraulic forces in extended fractures are solved using a lubrication equation. Using a new moving-boundary element partition methodology (EPM), fracture propagation through heterogeneous media is predicted simply and efficiently. The method allows coupling fluid flow and rock deformation, and fracture propagation using the lubrication equation to solve for the fluid pressure through newly propagating crack paths.
Using the proposed model, the 2D/3D hydraulic fracturing simulations are performed to investigate the role of material and rock heterogeneity. Furthermore, in geothermal and petroleum reservoir design, engineers can take advantage of thermal fracturing that occurs when heat transfers between injected flow and the rock matrix to create reservoir permeability. These thermal stresses are calculated using coupled THM analysis and their influence on crack propagation during reservoir stimulation are investigated using damage mechanics and thermal loading algorithms for newly fractured surfaces.
|
20 |
Validation of the Westinghouse BWR nodal core simulator POLCA8 against Serpent2 reference results / Validering av Westinghouse BWR nodal core simulator POLCA8 mot Serpent2 referensresultatGaillard, Mathilde January 2021 (has links)
When a new nodal core simulator is developed, like all other simulators, it must go through an extensive verification and validation effort where, in the first stage, it will be tested against appropriate reference tools in various theoretical benchmark problems. The series of tests consist of comparing several geometries, from the simplest to the most complex, by simulating them with the nodal core simulator developed and with some higher order solver representing the reference solution, in this case on the Serpent2 Monte Carlo transport code. The aim of this master’s thesis is to carry out one part of these tests. It consisted in simulating a three-dimensional (3D) 2x2 mini boiling water reactor (BWR) core with the latest version of the Westinghouse BWR nodal core simulator POLCA8, and in comparing the outcome of these simulations against Serpent2 reference results. Prior to this work, POLCA8 was successfully tested on a 3D single-channel benchmark problem using the same Serpent2/POLCA8 methodology. However, this benchmark problem considered in this work is challenging in several aspects. Indeed, the nodal core simulator should accurately predict the eigenvalues and power distribu- tions against reference results, and this by taking into account axial leakage, resulting from the passage from two-dimensional (2D) infinite lattice physics calculations to 3D simulations, or strong axial flux gradients due to the insertion or withdrawal of the control rods after a certain depletion. This last effect is known as the Control Blade History (CBH) effect and will be the main focus of this study. In addition to the development of a new version of the nodal core simulator, a new version of the Westinghouse deterministic transport code PHOENIX5 is also under development. The accuracy of PHOENIX5 was indirectly tested through this benchmark by providing the cross sections for the POLCA8 simulations. In addition, Serpent2 based nodal cross sections were generated to POLCA8 to provide means of comparing these two sets of nodal cross section data. The results obtained lead to the conclusion that the CBH model gives very good results, especially with regard to all power distributions, and especially those after the removal of the control bars when needed most.keywords: Nodal Core Analysis, Monte Carlo Methods, CBH Effects / När en ny nodal-kärnsimulator utvecklas, som alla andra simulatorer, måste den genomgå en omfattande verifierings och valideringsinsats där den i det första steget kommer att testas mot lämpliga referensverktyg i olika teoretiska riktmärkesproblem. Testserien består av att jämföra flera geometrier, från den enklaste till den mest komplexa, genom att simulera dem med den utvecklade nodkärnsimulatorn och med någon högre ord- ningslösning som representerar referenslösningen, i detta fall på Serpent2 Monte Carlo-transportkoden. Syftet med detta examensarbete är att genomföra en del av dessa tester. Den bestod av att simulera en tredimensionell (3D) 2x2 mini-kokande vattenreaktor (BWR) -kärna med den senaste versionen av Westinghouse BWR- nodalkärnasimulator POLCA8, och att jämföra resultatet av dessa simuleringar mot Serpent2-referensresultat. Före detta arbete testades POLCA8 framgångsrikt på ett 3D-enkanaligt riktmärkesproblem med samma Serpent2 / POLCA8-metodik. Detta riktmärkesproblem som beaktas i detta arbete är dock utmanande i flera aspekter. I själva verket bör nodkärnsimulatorn noggrant förutsäga egenvärdena och kraftfördelningarna mot referensre- sultat, och detta genom att ta hänsyn till axiellt läckage, resulterande från övergången från tvådimensionella (2D) oändliga gitterfysikberäkningar till 3D-simuleringar eller starkt axiellt flöde gradienter på grund av att styrstavarna sätts in eller dras ut efter en viss utarmning. Denna sista effekt är känd som CBH-effekten (Control Blade History) och kommer att vara huvudfokus för denna studie. Förutom utvecklingen av en ny version av nodal core-simulatorn är också en ny version av Westinghouse deterministiska transportkod PHOENIX5 under utveckling. PHOENIX5: s noggrannhet testades indirekt genom detta riktmärke genom att tillhandahålla tvärsnitt för POLCA8-simuleringar. Dessutom genererades Serpent2-baserade nodtvärsnitt till POLCA8 för att tillhandahålla medel för att jämföra dessa två uppsättningar av nodtvärsnittsdata. De erhållna resultaten leder till slutsatsen att CBH-modellen ger mycket bra resultat, särskilt med avseende på alla effektfördelningar, och särskilt de som har tagits bort när man behöver mest.
|
Page generated in 0.0367 seconds