• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Синтеза и карактеризација нанокомпозитних честица са структуром језгро-омотач / Sinteza i karakterizacija nanokompozitnih čestica sa strukturom jezgro-omotač / Synthesis and characterization of nanocomposite particles with core-shell structure

Nikolić Milan 05 May 2014 (has links)
<p>У овој докторској дисертацији приказани су резултати синтеза и карактеризација нано-композитних честица са језгро-омотач структуром. Нанокомпозитне честице су синтетисане у течној фази, електростатичком депозицијом in situ синтетисаних SiO2, Fe3O4, ZnFe2O4 или NiFe2O4 наночестица на површину монодисперзних и сферичних силика језгро честица (средњег пречника ~ 0,4 &mu;m). Силика језгро честице су синтетисане хидролизом и кондезацијом TEOS-a у базној средини. Силика наночестице су добијене неутрализацијом јако базног воденог раствора натријум силиката, док су феритне наночестице синтетисане копреципитацијом из воденог раствора одговарајућих нитратних соли. Да би се омогућила електростатичка депозиција нано-честица, силика језгра су функционализована са 3-аминопропилтриетоксисилан (APTES) или поли(диалилдиметиламонијум хлорид) (PDDA) чиме се повећава изоелектрична тачка силика честица. На овај начин су око силика језгро честица синтетисани једнослојни омотачи на бази SiO2, Fe3O4, ZnFe2O4 или NiFe2O4.<br />Резултати су потврдили да се униформан силика слој може депоновати на функцијонализованим силика честицама. Формиран силика омотач је имао дебљину ~ 30 nm, мезопорозну структуру са средњом величином пора од ~ 8 nm и значајном укупном запремином пора. Због тога су тако добијене силика језгро-омотач наноструктуре погодне за имобилизацију ензима али и неких других активних материја. Такође је потврђено да је оптимална pH вредност за синтезу хомогеног Fe3O4 омотача на нефункционализованим силика језгрима ~ 5,4. Добијени Fe3O4 омотач је суперпа-рамагнетан са температуром блокирања ~ 25 К. Уградња никла и цинка у феритну структуру омотача није било могуће на нижим pH вредностима. Међутим, показано је и да је на вишим pH вредностима велика брзина формирања феритних честица и њихова самоагрегација доминира над конкурентном реакцијом депозиције феритних честица на функционализована силика језгра. У циљу спречавања самоагрегације, депо-зиција ZnFe2O4 и NiFe2O4 наночестица на PDDA-функционализованим силика језгрима је обављена у присуству цитратне киселине на pH &gt; 7. Цитратна киселина пасивизира површину феритних наночестица и на тај начин инхибира самоагрегацију, омогућавајући депозицију ових честица на површину PDDA-функционализованих силика језгара.<br />У овој тези су синтетисане честице са двослојним омотачем, који се састоје од унутрашњег Fe3O4 и спољашњег силика слоја. На PDDA-функцио-нализованим SiO2-језгро/Fe3O4-омотач честицама, обављена је депозиција силика наночестица чиме је формиран спољни мезопорозни силика омотач. Добијене су композитне честице са два различита функционална слоја: унутрашњим који омогућава магнетну сепарацију честице из реакционог медијума и спољним који омогућава имобили-зацију активних материја. Добијени резултати су указали да се ове нанокомпозитне честице могу употребити у биоинжењерству и областима хертерогене катализе.</p> / <p>U ovoj doktorskoj disertaciji prikazani su rezultati sinteza i karakterizacija nano-kompozitnih čestica sa jezgro-omotač strukturom. Nanokompozitne čestice su sintetisane u tečnoj fazi, elektrostatičkom depozicijom in situ sintetisanih SiO2, Fe3O4, ZnFe2O4 ili NiFe2O4 nanočestica na površinu monodisperznih i sferičnih silika jezgro čestica (srednjeg prečnika ~ 0,4 &mu;m). Silika jezgro čestice su sintetisane hidrolizom i kondezacijom TEOS-a u baznoj sredini. Silika nanočestice su dobijene neutralizacijom jako baznog vodenog rastvora natrijum silikata, dok su feritne nanočestice sintetisane koprecipitacijom iz vodenog rastvora odgovarajućih nitratnih soli. Da bi se omogućila elektrostatička depozicija nano-čestica, silika jezgra su funkcionalizovana sa 3-aminopropiltrietoksisilan (APTES) ili poli(dialildimetilamonijum hlorid) (PDDA) čime se povećava izoelektrična tačka silika čestica. Na ovaj način su oko silika jezgro čestica sintetisani jednoslojni omotači na bazi SiO2, Fe3O4, ZnFe2O4 ili NiFe2O4.<br />Rezultati su potvrdili da se uniforman silika sloj može deponovati na funkcijonalizovanim silika česticama. Formiran silika omotač je imao debljinu ~ 30 nm, mezoporoznu strukturu sa srednjom veličinom pora od ~ 8 nm i značajnom ukupnom zapreminom pora. Zbog toga su tako dobijene silika jezgro-omotač nanostrukture pogodne za imobilizaciju enzima ali i nekih drugih aktivnih materija. Takođe je potvrđeno da je optimalna pH vrednost za sintezu homogenog Fe3O4 omotača na nefunkcionalizovanim silika jezgrima ~ 5,4. Dobijeni Fe3O4 omotač je superpa-ramagnetan sa temperaturom blokiranja ~ 25 K. Ugradnja nikla i cinka u feritnu strukturu omotača nije bilo moguće na nižim pH vrednostima. Međutim, pokazano je i da je na višim pH vrednostima velika brzina formiranja feritnih čestica i njihova samoagregacija dominira nad konkurentnom reakcijom depozicije feritnih čestica na funkcionalizovana silika jezgra. U cilju sprečavanja samoagregacije, depo-zicija ZnFe2O4 i NiFe2O4 nanočestica na PDDA-funkcionalizovanim silika jezgrima je obavljena u prisustvu citratne kiseline na pH &gt; 7. Citratna kiselina pasivizira površinu feritnih nanočestica i na taj način inhibira samoagregaciju, omogućavajući depoziciju ovih čestica na površinu PDDA-funkcionalizovanih silika jezgara.<br />U ovoj tezi su sintetisane čestice sa dvoslojnim omotačem, koji se sastoje od unutrašnjeg Fe3O4 i spoljašnjeg silika sloja. Na PDDA-funkcio-nalizovanim SiO2-jezgro/Fe3O4-omotač česticama, obavljena je depozicija silika nanočestica čime je formiran spoljni mezoporozni silika omotač. Dobijene su kompozitne čestice sa dva različita funkcionalna sloja: unutrašnjim koji omogućava magnetnu separaciju čestice iz reakcionog medijuma i spoljnim koji omogućava imobili-zaciju aktivnih materija. Dobijeni rezultati su ukazali da se ove nanokompozitne čestice mogu upotrebiti u bioinženjerstvu i oblastima herterogene katalize.</p> / <p>This thesis presents the results of the synthesis and characterization of the nanocomposite particles with core-shell structure. Nanocomposite particles were synthesized by liquid-phase technique through electrostatic deposition of in situ synthesized SiO2, Fe3O4, ZnFe2O4 or NiFe2O4 nanoparticles on the surface of spherical and monodispersed silica core particles (average size ~ 0.4 &mu;m). Silica core particles were prepared by hydrolysis and condensation of tetraethylorthosilicate in basic conditions. Silica nanoparticles were obtained by neutralization of highly basic sodium silicate solution while ferrite nanoparticles were obtained by coprecipitation from solutions of the corresponding nitrate salts. To improve electrostatic assembling of nanoparticles on the surface of silica core particles, the latter were functionalized with 3-amino-propyltriethoxysilane (APTES) or poly(diallyldimethylammonium chloride) (PDDA) which increases the isoelectric point of the silica core particles. In this way SiO2, Fe3O4 , ZnFe2O4 or NiFe2O4 shells were synthesized around the silica core particles, respectively.<br />The results confirmed that uniform silica layer can be deposited at the functionalized silica core particles. The formed silica layer had thickness of ~ 30 nm, mesoporous structure with average pore size of ~ 8 nm and high total pore volume. This makes silica shell suitable for immobilization of enzymes. Optimal conditions for synthesis of homogenous and thin Fe3O4 shell around non-functionalized silica core particles were found at pH ~ 5.4. Obtained Fe3O4 shell was superparamagnetic with blocking temperature at ~25 К. Incorporation of nickel and zinc into ferrite structure was impossible at lower pH values. However at higher pH the formation rate of Ni- and Zn-ferrite particles becomes very fast and the self-aggregation dominates the competing formation of the ferrite shell around functionalized silica cores. Because of that the self-aggregation was prevented by surface modify-cation of ZnFe2O4 and NiFe2O4 nanoparticles with citric acid before their deposition on the PDDA-functionalized silica core and homogenous and continuous shells were finally obtained at pH &gt; 7.<br />In addition, bilayered shell composed of internal Fe3O4 layer and external SiO2 layer, were also prepared. Silica nanoparticles were deposited on the surface of PDDA-functionalized SiO2-core/Fe3O4-shell particles which induced formation of external mesoporous silica shell. Obtained composite particles had two different functional layers: internal which would allow its magnetic separation from reaction mixture and external which could allow imobilization of various molecules and nanoparticles such as enzymes inside its pores. Based on these results, obtained nanoparticles could be used in bioengineering and heterogenous catalysis.</p>
12

Formation et propriétés des cristaux colloïdaux issus de l’auto-assemblage de microsphères de polymère

Bazin, Gwénaëlle 04 1900 (has links)
Le besoin pour des biocapteurs à haute sensibilité mais simples à préparer et à utiliser est en constante augmentation, notamment dans le domaine biomédical. Les cristaux colloïdaux formés par des microsphères de polymère ont déjà prouvé leur fort potentiel en tant que biocapteurs grâce à l’association des propriétés des polymères et à la diffraction de la lumière visible de la structure périodique. Toutefois, une meilleure compréhension du comportement de ces structures est primordiale avant de pouvoir développer des capteurs efficaces et polyvalents. Ce travail propose d’étudier la formation et les propriétés des cristaux colloïdaux résultant de l’auto-assemblage de microsphères de polymère en milieu aqueux. Dans ce but, des particules avec différentes caractéristiques ont été synthétisées et caractérisées afin de corréler les propriétés des particules et le comportement de la structure cristalline. Dans un premier temps, des microsphères réticulées de polystyrène anioniques et cationiques ont été préparées par polymérisation en émulsion sans tensioactif. En variant la quantité de comonomère chargé, le chlorure de vinylbenzyltriméthylammonium ou le sulfonate styrène de sodium, des particules de différentes tailles, formes, polydispersités et charges surfaciques ont été obtenues. En effet, une augmentation de la quantité du comonomère ionique permet de stabiliser de façon électrostatique une plus grande surface et de diminuer ainsi la taille des particules. Cependant, au-dessus d’une certaine concentration, la polymérisation du comonomère en solution devient non négligeable, provoquant un élargissement de la distribution de taille. Quand la polydispersité est faible, ces microsphères chargées, même celles non parfaitement sphériques, peuvent s’auto-assembler et former des cristaux colloïdaux diffractant la lumière visible. Il semble que les répulsions électrostatiques créées par les charges surfaciques favorisent la formation de la structure périodique sur un grand domaine de concentrations et améliorent leur stabilité en présence de sel. Dans un deuxième temps, le besoin d’un constituant stimulable nous a orientés vers les structures cœur-écorce. Ces microsphères, synthétisées en deux étapes par polymérisation en émulsion sans tensioactif, sont formées d’un cœur de polystyrène et d’une écorce d’hydrogel. Différents hydrogels ont été utilisés afin d’obtenir des propriétés différentes : le poly(acide acrylique) pour sa sensibilité au pH, le poly(N-isopropylacrylamide) pour sa thermosensibilité, et, enfin, le copolymère poly(N-isopropylacrylamide-co-acide acrylique) donnant une double sensibilité. Ces microsphères forment des cristaux colloïdaux diffractant la lumière visible à partir d’une certaine concentration critique et pour un large domaine de concentrations. D’après les changements observés dans les spectres de diffraction, les stimuli ont un impact sur la structure cristalline mais l’amplitude de cet effet varie avec la concentration. Ce comportement semble être le résultat des changements induits par la transition de phase volumique sur les interactions entre particules plutôt qu’une conséquence du changement de taille. Les interactions attractives de van der Waals et les répulsions stériques sont clairement affectées par la transition de phase volumique de l’écorce de poly(N-isopropylacrylamide). Dans le cas des microsphères sensibles au pH, les interactions électrostatiques sont aussi à considérer. L’effet de la concentration peut alors être mis en relation avec la portée de ces interactions. Finalement, dans l’objectif futur de développer des biocapteurs de glucose, les microsphères cœur-écorce ont été fonctionnalisées avec l’acide 3-aminophénylboronique afin de les rendre sensibles au glucose. Les effets de la fonctionnalisation et de la complexation avec le glucose sur les particules et leur empilement périodique ont été examinés. La structure cristalline est visiblement affectée par la présence de glucose, même si le mécanisme impliqué reste à élucider. / The need for biosensors with high sensibility but simple preparation and use has been increasing, especially in the biomedical field. Crystalline colloidal arrays (CCAs) formed by polymer microspheres have already demonstrated great potential for biosensing applications, combining the polymer properties to the visible light diffraction caused by their periodic structure. However, a better understanding of the behavior of such structures is essential in the objective to develop efficient and versatile biosensors. This work proposes to investigate the formation and properties of CCAs created by the self-assembly of polymer microspheres in aqueous medium. For that purpose, particles with different features have been synthesized and studied to highlight the correlation between the properties of the particles and the behavior of the CCAs. First, anionic and cationic cross-linked polystyrene microspheres have been prepared by surfactant-free emulsion polymerization. Different sizes, shapes, polydispersities and surface charge densities have been obtained by the use of various amounts of charged comonomers, either vinylbenzyltrimethylammonium chloride or sodium styrenesulfonate. Indeed, an increasing amount of the ionic comonomer leads to a decreasing particle size because of the ability to electrostatically stabilize more surfaces. However, above a certain concentration, the polymerization of the comonomer in solution increases the polydispersity of the particle size. When allowed by a low polydispersity, the charged microspheres can self-assemble into CCAs with intense visible light diffraction, even for particles not quite spherical. It appears that the electrostatic repulsions created by the charges help in the formation of the periodic structure over a wide range of particle concentrations and improve their stability towards ionic strength. Secondly, the need for a sensitive component brought us to investigate core-shell structures. These microspheres, synthesized by a two-step surfactant-free emulsion polymerization, are made of a polystyrene core and a hydrogel shell. Different hydrogels have been used to achieve different properties: poly(acrylic acid) for pH-sensitivity, poly(N-isopropylacrylamide) for thermosensitivity and poly(N-isopropylacrylamide-co-acrylic acid) for double sensitivity to both stimuli. Above a certain critical concentration, and over a wide range of concentrations, these microspheres also form CCAs with visible light diffraction. The resulting crystalline structures also display a response to the stimuli, visible through changes in the diffraction spectra, but the response appears to be dependent on the microsphere concentration. This behavior seems to be the result of a change in the interactions between particles rather than the outcome of the volume change of the particles. Attractive van der Waals and repulsive steric interactions are clearly affected by the temperature-induced volume phase transition of poly(N-isopropylacrylamide) microspheres. In the case of pH-sensitive, electrostatic interactions are also to be considered. The effect of concentration can then related to the range of the interactions. Finally, in the objective to develop glucose sensors, the previous microspheres have been functionalized with 3-aminophenylboronic acid to make them responsive to glucose. The effects of the functionalization and complexation with glucose on the particles and their CCAs have been investigated. The crystalline structure is clearly affected by the presence of glucose, even though the mechanism involved remains to be clarified.
13

Smart hydrogels based platforms for investigation of biochemical reactions

Dubey, Nidhi Chandrama 20 August 2015 (has links)
Polyketides are natural products with complex chemical structures and immense pharmaceutical potential that are synthesized via secondary metabolic pathways. The in-vitro synthesis of these molecules requires high supply of building blocks such as acetyl Co-enzyme A, and cofactors (adenosine triphosphate (ATP). These precursor and cofactor are synthesized from respective soluble enzymes. Owing to the expensive nature of the enzymes, it is important to immobilize enzymes to improve the process economics by enabling multiple uses of catalyst and improving overall productivity and robustness. The polymer-based particles of nano and submicron size have become attractive material for their role in the life sciences. With the advances in synthetic protocols of the microgels and commercial availability of many of the monomers, it is feasible to tune the properties of the particles as per the process requirement. The core shell microgel with functional shell allows high loading of ligands onto the microgel particles due to increased availability of functional group on the outer surface. The aim of the thesis thus was to study biochemical reactions on the smart microgels support using single (acetyl CoA synthetase (Acs)) and dual (pyruvate kinase (Pk) and L-lactic dehydrogenase (Ldh)) enzyme/s systems. The study indicated that the enzyme immobilization significantly depends on the enzyme, conjugation strategy and the support. The covalent immobilization provides rigidity to the enzyme structure as in case of Acs immobilized on PNIPAm-AEMA microgels but at the same time leads to loss in enzyme activity. Whereas, in the case of covalent immobilization of Ldh on microgel showed improved in enzyme activity. On the other hand adsorption of the enzyme via ionic interaction provide better kinetic profile of enzymes hence the membrane reactor was prepared using PNIPAm-PEI conjugates for acetyl CoA synthesis. The better outcome of work with PNIPAm-PEI resulted in its further evaluation for dual enzyme system. This work is unique in the view that the immobilization strategies were well adapted to immobilize single and dual enzymes to achieve stable bioconjugates for their respective applications in precursor biosynthesis (Acetyl Co enzyme A) and co-factor dependent processes (ACoA and ATP). The positive end results of microgels as the support (particles in solution and as the thin film (membrane)) opens further prospective to explore these systems for other precursor biomolecule production.

Page generated in 0.0557 seconds