Spelling suggestions: "subject:"born -- water requirements."" "subject:"born -- later requirements.""
1 |
Irrigation scheduling methods and water use of sweet cornBraunworth Jr, William S. 12 May 1986 (has links)
Graduation date: 1987
|
2 |
A model of corn response to available moisture : and an economic model to schedule irrigationsMorgan, Thomas Henry January 2011 (has links)
Typescript. / Digitized by Kansas Correctional Industries
|
3 |
Physical properties and water use by maize on some Trinidad soils.Georges, J. E. Williams. January 1970 (has links)
No description available.
|
4 |
Physical properties and water use by maize on some Trinidad soils.Georges, J. E. Williams. January 1970 (has links)
No description available.
|
5 |
Interplot and intraplot border effects on maize genotypes under two levels of moisture availabilitySemon, Mande, 1957- January 1988 (has links)
The performance of three maize (Zea mays L.) hybrids, grown under two irrigation levels, was used to investigate the effects of soil moisture competition between adjacent plots, the transmission of these effects into multi-row adjacent plots and types of multi-row plots and plot borders most effective in shielding from these interplot competition effects. On the basis of grain yield, competition effects intended to the second rows of five-row plots necessitating more than five-row plots to accurately evaluate the full transmission of interplot competition effects into adjacent plots. Evaluation of genotypes in one-row plots all with the same common border row genotype to make them three-row plots would be more suitable for evaluation of relative competitiveness for soil moisture under soil moisture stress conditions compared to no border rows or border rows of the same genotype being evaluated.
|
6 |
Growth, yield and water use of rainfed wheat and maize influenced by tillage and fertilizer in Pothwar, PakistanAli, Safdar 24 September 1993 (has links)
Graduation date: 1994
|
7 |
Drought analysis with reference to rain-fed maize for past and future climate conditions over the Luvuvhu River catchment in South AfricaMasupha, Elisa Teboho 02 1900 (has links)
Recurring drought conditions have always been an endemic feature of climate in South Africa, limiting maize development and production. However, recent projections of the future climate by the Intergovernmental Panel on Climate Change suggest that due to an increase of atmospheric greenhouse gases, the frequency and severity of droughts will increase in drought-prone areas, mostly in subtropical climates. This has raised major concern for the agricultural sector, particularly the vulnerable small-scale farmers who merely rely on rain for crop production. Farmers in the Luvuvhu River catchment are not an exception, as this area is considered economically poor, whereby a significant number of people are dependent on rain-fed farming for subsistence. This study was therefore conducted in order to improve agricultural productivity in the area and thus help in the development of measures to secure livelihoods of those vulnerable small-scale farmers.
Two drought indices viz. Standardized Precipitation Evapotranspiration Index (SPEI) and Water Requirement Satisfaction Index (WRSI) were used to quantify drought. A 120-day maturing maize crop was considered and three consecutive planting dates were staggered based on the average start of the rainy season. Frequencies and probabilities during each growing stage of maize were calculated based on the results of the two indices. Temporal variations of drought severity from 1975 to 2015 were evaluated and trends were analyzed using the non-parametric Spearman’s Rank Correlation test at α (0.05) significance level. For assessing climate change impact on droughts, SPEI and WRSI were computed using an output from downscaled projections of CSIRO Mark3.5 under the SRES A2 emission scenario for the period 1980/81 – 2099/100. The frequency of drought was calculated and the difference of SPEI and WRSI means between future climate periods and the base period were assessed using the independent t-test at α (0.10) significance level in STATISTICA software.
The study revealed that planting a 120-day maturing maize crop in December would pose a high risk of frequent severe-extreme droughts during the flowering to the grain-filling stage at Levubu, Lwamondo, Thohoyandou, and Tshiombo; while planting in October could place crops at a lower risk of reduced yield and even total crop failure. In contrast, stations located in the low-lying plains of the catchment (Punda Maria, Sigonde, and Pafuri) were exposed to frequent moderate droughts following planting in October, with favorable conditions noted following the December planting date. Further analysis on the performance of the crop under various drought conditions revealed that WRSI values corresponding to more intense drought conditions were detected during the December planting date for all stations. Moreover, at Punda Maria, Sigonde and Pafuri, it was observed that extreme drought (WRSI <50) occurred once in five seasons, regardless of the planting date.
Temporal analysis on historical droughts in the area indicated that there had been eight agricultural seasons subjected to extreme widespread droughts resulting in total crop failure i.e. 1983/84, 1988/89, 1991/92, 1993/94, 2001/02, 2002/03, 2004/05 and 2014/15. Results of Spearman’s rank correlation test revealed weak increasing drought trends at Thohoyandou (ρ = of 0.5 for WRSI) and at Levubu and Lwamondo (ρ = of 0.4 for SPEI), with no significant trends at the other stations. The study further revealed that climate change would enhance the severity of drought across the catchment. This was statistically significant (at 10% significance level) for the near-future and intermediate-future climates, relative to the base period.
Drought remains a threat to rain-fed maize production in the Luvuvhu River catchment area of South Africa. In order to mitigate the possible effects of droughts under climate change, optimal planting dates were recommended for each region. The use of seasonal forecasts during drought seasons would also be useful for local rain-fed maize growers especially in regions where moisture is available for a short period during the growing season. It was further recommended that the Government ensure proper support such as effective early warning systems and inputs to the farmers. Moreover, essential communication between scientists, decision makers, and the farmers can help in planning and decision making ahead of and during the occurrence of droughts. / Agriculture, Animal Health and Human Ecology / M. Sc. (Agriculture)
|
Page generated in 0.075 seconds