Spelling suggestions: "subject:"contrarieties."" "subject:"ethnovarieties.""
11 |
Field Corn Variety Trial, DuncanFarrell, Steve, Parsons, David K., Clark, Lee J. 09 1900 (has links)
No description available.
|
12 |
1984 Field Corn Variety Trials, BonitaSullivan, Lawrence M., Parsons, David K., Clark, Lee J. 09 1900 (has links)
No description available.
|
13 |
Silage Corn Variety Trial in Central ArizonaLoper, Shawna, Subramani, Jay 06 1900 (has links)
Ten varieties of silage corn were tested at the Maricopa Agricultural Center in Central Arizona. Information on silage corn yield and quality can help the dairy industry and silage growers choose varieties that best fit their needs. There were no significant differences between any of the varieties tested with respect to ‘yield per acre’, ‘crude protein’, NDF or ‘ash content'. We were able to find significant differences with ADF.
|
14 |
Tolerance of maize genotypes to selected herbicidesKanyomeka, Luke 12 October 2005 (has links)
Maize damage has been observed from time to time in many parts of South Africa where registered herbicides were applied. Differential cultivar tolerance to certain herbicides was identified as an important factor in many cases where herbicide selectivity was inadequate. A study was done to investigate the existence of differential tolerance of maize genotypes to selected herbicides. Several maize genotypes were screened for tolerance to selected herbicides, both in the greenhouse and in the field. Maize genotypes demonstrated significant differences in their tolerance to all herbicides. Some genotypes were severely injured by certain herbicides while others were not affected at all by the same herbicide. This suggests that maize genotypes should be screened for tolerance to herbicides in order to reduce crop injury by using only appropriate ones for specific genotypes. Generally, hybrids were more tolerant to herbicides than inbreds, indicating that screening may be most necessary in seed production, where inbreds are used, than in commercial production where only hybrids are used. Tolerance of maize to herbicides was more variable to metazachlor than to other herbicides, and metazachlor also injured more genotypes than other herbicides. This was probably due to differences in herbicide mechanism of action. Shoot or root dry mass reduction of some of the maize genotypes occurred without visual injury symptoms, thus suggesting that visual injury may not reliably indicate susceptibility or tolerance to herbicides. The degree of correspondence of herbicide effects on maize in the greenhouse and the field was determined. Comparison of results from the greenhouse and the field showed that there is positive correlation between herbicide effects in the greenhouse and in the field. There was generally good correspondence of major parameters, such as shoot dry mass and injury symptoms, in the greenhouse and in the field. Similarly these parameters were positively correlated with the grain yield obtained from the field. It appears that shoot dry mass and visual injury symptoms could be good predictors of the yield. This indicates that reliable data could be generated through quicker screening at greenhouse level. A total of four herbicides, metazachlor, dimethenamid, acetochlor and the combination atrazine / metolachlor / terbuthylazine, had significant correlations while only two, flufenacet and acetochlor + atrazine/sulcotrione, had no significant correlations for major parameters with the yield. This indicates that the correlation of data was herbicide-dependent. The influence of temperature on maize tolerance to alachlor, metazachlor and metolachlor was investigated. Results showed that low temperatures reduce the tolerance of maize to these herbicides. This could mean that low temperature may reduce the selectivity of these herbicides. Fluctuating temperature conditions of 10°C at night and 35°C during the day, which are found in some maize producing areas, did not affect maize tolerance to the herbicides. The possibility of improving metazachlor tolerance in maize was also investigated. Evidence provided for possible gene effects on the tolerance of metazachlor indicates that maize tolerance to the herbicide could be improved by crossing tolerant parents. The results suggest that it may be possible to improve metazachlor tolerance by crossing appropriate parent lines with dominant genes for tolerance to metazachlor. Ultrastructural changes in the maize seedling root and shoot cells caused by metazachlor were investigated. In susceptible genotypes root cell nucleoli were found to be abnormally large, empty and more abundant than those in untreated control plants. In susceptible plants the chromatids appeared disorganised in cell nucleoli, and both the nuclear and plasma membranes showed signs of disintegrating. There were more and larger vacuoles in the herbicide-susceptible plants. Leaf cells from the susceptible plants had more empty vacuoles and more chloroplasts with generally disorganised content. The bundle sheath chloroplast membranes were dilated in susceptible plants, and the orientation of the grana was disrupted. In the herbicide-tolerant plants, the ultrastructure was not different from that of all the untreated plants. The established differential tolerance of maize to herbicides necessitates the screening of all genotypes to all registered herbicides in order to recommend specific herbicides for certain maize genotypes. Due to the large number of genotypes that would require screening, techniques that yield reliable data quickly have obvious merit. Pot experiments under controlled conditions, which could be selected to promote herbicide bioactivity, are likely to provide data with which the best possible predictions on the risk of herbicide damage in the field could be made. Based on this requirement, environmental factors that should be considered for greenhouse work are: soil with low adsorptive capacity, soil water content close to the field capacity level, and cool temperatures. When screening for herbicide tolerance, the use of herbicide rates in excess of the recommended rate could obviate the need for special environmental conditions, since all the aforementioned factors basically promote the accumulation of higher than usual amounts of herbicide at the site of action in the plant. Therefore, the use of at least a 2X-herbicide rate in screening experiments is advised. / Thesis (PhD (Plant Production: Weed Science))--University of Pretoria, 2006. / Plant Production and Soil Science / unrestricted
|
15 |
Genetic analysis and response to selection for resistance to two stem borers, Busseola fusca and Chilo partellus, in tropical maize germplasm.Mwimali, Murenga Geoffrey. 19 June 2014 (has links)
Maize is the principal staple food in sub-Saharan Africa (SSA), but production lags behind population growth. The African stem borer, Busseola fusca, Fuller (Lepidoptera, Noctuidae), and the spotted stem borer, Chilo partellus, Swinhoe (Lepidoptera, Crambidae) are serious insect pests of maize in tropical environments. The damage can be managed by breeding stem borer resistant maize varieties but there is limited information that can be used to devise appropriate breeding programs. Therefore breeding investigations were conducted to appraise germplasm screening methods, and to determine combining ability, heterosis and response of maize populations to S1 progeny recurrent selection. The study was conducted in Kenya during 2010 to 2013.
The results showed that most of the test genotypes were susceptible to B. fusca and less so to C. partellus, indicating that breeding for B. fusca would be more challenging. Therefore more resources would be required to improve maize germplasm for resistance to B. fusca to broaden the base from which breeders will select suitable lines for breeding. There was a highly significant (r=0.947, p≤ 0.01) correlation between rank selection index in the greenhouse and laboratory. The detached leaf disk bioassay method was effective for screening maize genotypes for resistance to both stem borers. Therefore it will be recommended for use in screening maize genotypes in future studies. The line x tester studies indicated a preponderance of the additive gene effects for borer resistance traits. Specific combining ability effects were significant for resistance traits and grain yield indicating that non-additive effects were also influential. Findings from the breeding investigations will impact positively on both food security and plant breeding capacity. The completed study was successful in identifying new maize inbred lines with resistance to both stem borers. These lines have high utility to maize breeding programmes that emphasise stem borer resistance in tropical environments. For the hybrid-oriented programmes, combining ability and heterotic orientation data for the 66 maize inbred lines will be crucial. In this regard the study was very successful in classifying the lines into three heterotic groups according to single cross testers (CML395/CML444, and CML312/CML442) that are widely used at CIMMYT, and by public breeding programs throughout SSA. Importantly, this was done based on grain yield potential of hybrids under B. fusca and C. partellus infestations in three mega environments.
The study demonstrates that S1 progeny recurrent selection is effective for improving stem borer resistance, without compromising yield. There was significant reduction (69%) in maize plant damage by both pests, and yield gains of 25% to 70% were realised in two populations. This represents significant contribution to plant breeding capacity, especially to maize breeding programmes that emphasise stem borer resistance in hybrids. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2014.
|
16 |
Assessment of maize germplasm lines for genetic diversity, cultivar superiority and combining ability.Khoza, Suzan. 05 November 2013 (has links)
Maize (Zea mays L.) is an important crop in the world; however, its yield is compromised by new production challenges leading to poor yield in sub-Saharan Africa. This calls for a need to enhance maize adaptation to changing climate and challenging environments. The new maize varieties should be richly endowed with high frequency of genes that confer high
yield under stress and non-stress conditions. Currently, such maize is not available, prompting research into development of new germplasm lines for use in developing new hybrids. The objective of the study was to determine i) the level of genetic diversity using SSR molecular markers and phenotypic data in a set of 60 maize inbreds from the breeding program, ii) genotype by environment interaction in maize hybrids, iii) cultivar superiority, iv) combining ability effects, v) the relationship between yield and secondary traits and vi) the relevant genetic parameters that underpin genetic gains in a breeding program. To study genetic diversity present in the germplasm, phenotypic data and 30 SSR markers were used to estimate the genetic distance between the inbreds. The results indicated that inbred lines which were put in the same cluster were related by pedigree and origin. To assess the level of genotype by environment interaction (GXE) and cultivar superiority of the new germplasm lines, hybrids were planted in five environments with two replications. Data
were analysed using the REML and AMMI tools in GenStat 14th edition. The results revealed significant differences between hybrids and environments for grain yield. However, GXE interaction was also significant indicating possible challenges which can be encountered in selecting new hybrids. To determine combining ability estimates two different testers were used. The REML tool from GENSTAT was used to perform the line X tester analysis. Results indicated that both additive and non-additive gene action were important for grain yield. The direct selection strategy for yield was recommended because heritability of grain yield was high. Overall, results suggested that the information on genetic diversity will assist in defining heterotic groups; which will enable effective and efficient management of the germplasm lines to produce new maize hybrids. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
|
17 |
Why SR52 is such a great maize hybrid.Musimwa, Tatenda Rambi. January 2013 (has links)
Maize is Africa’s most important food crop. Unfortunately a yield gap currently exists in Africa which can be attributed to the use of inferior maize varieties such as open-pollinated varieties, double and three-way cross hybrids. Single cross maize hybrids, such as the world’s first commercial hybrid, SR52, have a higher yield potential, which is reflected by the doubling of maize yields in southern and eastern Africa by SR52, within a decade of its release. The main objective of this study was to determine the genetic basis behind SR52’s high yield potential and heterosis. This was established through a generation mean and path coefficient analysis of the SR52 maize hybrid.
Research to determine genetic basis of yield and secondary trait was conducted using a randomized complete block design at two sites during the 2012/13 season, in South Africa. Six derivative generations of SR52 namely, its two parents N3 and SC, F1 and F2, and F1 backcross progenies (BC1N3 and BC1SC) were evaluated. A generation mean analysis was performed using PROC GLM procedures in SAS computer software program. High levels of mid-parent heterosis for grain yield potential was confirmed and ranged from 140% at Cedara to 311% at Ukulinga. The additive-dominance model was not adequate to explain the yield potential of SR52. Although negligible (less than 10%), epistatic gene effects were also influential (P<0.01) on grain yield and its components in SR52. The dominance and additive gene effects were highly significant (P<0.01), but dominance effects were the most influential. Correlation and path coefficient analysis of SR52’s segregating F2 and BC1 populations was performed in SAS. Most secondary traits, such as ear mass, ear length, total number of kernels per ear and plant height, were significant (P<0.05) and positively correlated with yield. However, the ear length, number of kernel rows, kernels per row and 100-kernel mass displayed the largest direct effects on yield of SR52, while indirect effects of secondary traits were small. The presence of genetic variation, as well as transgressive segregants for the yield components indicates possibility for extracting new germplasm lines with the desired QTL’s. It is concluded that SR52 is such an exceptional hybrid because of dominance gene action and direct contribution of superior cob length, number of kernel rows and mass of kernels to yield. / Thesis (M.Sc.Agric.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
|
18 |
Genetic and economic value of a shuttle breeding programme for enhancing adaptability of tropical maize germplasm in South Africa.Musundire, Lennin. January 2013 (has links)
Maize is the principal crop for food security and livestock feed in South Africa. It is also an industrial crop and the produce is exported to many countries in the world. Therefore there is high seed demand which prompts competition for breeding productive hybrids. However direct introduction of tropical hybrids into the warm temperate South African environments has not been successful. Competitive advantages can be obtained by implementing a “shuttle breeding” programme whereby part of the breeding is done in Zimbabwe and South Africa to minimise research and production costs. Introgression of temperate germplasm in tropical elite inbred lines can also be pursued to obtain adapted hybrids. The aim of this study was therefore to assess the effectiveness of introgression of temperate germplasm into tropical elite maize inbred lines as a strategy to enhance adaptability of new hybrids to South Africa, and also to determine both breeding and economic value of a “shuttle breeding” programme. To this end, the introgressed inbred lines and their hybrid progenies were evaluated in South Africa to determine the effect of the selection environment on their performance and genetic variation. Both genetic and economic gains were evaluated with a view to make recommendations to the small and medium scale enterprises with interests in the market.
Introgression of temperate germplasm into tropical germplasm elite lines did not disrupt the heterotic groupings because most of the introgressed lines (86%) fitted into known existing heterotic groups. Only 14% of the introgressed lines did not show any inclination to towards the known heterotic clusters of their founder tropical parents. These lines were considered to be new recombinant inbred lines that showed little resemblance with their founder parents. Selection environment did not influence heterotic clustering of the introgressed lines, and genetic diversity was identified among introgressed lines developed in the same environment.
Genetic variation was observed for the major economic traits and heritability of 21% to 91%. The introgression was effective for improving grain yield potential and ear prolificacy. Spearman’s rank correlation analysis on grain yield and ear prolificacy data showed significant positive correlation between selection environments such as Ukulinga in South Africa and Kadoma Research Centre in Zimbabwe. Therefore Kadoma Research Centre will be recommended for use in breeding new maize germplasm lines for South Africa. Correlation among traits showed that ear prolificacy and plant height had significant (P<0.05) direct effects on grain yield thus direct selection of these traits will be emphasised in breeding new hybrids.
Introgression of temperate germplasm into tropical elite maize inbred lines was effective for improving their adaptation to warm temperate environments. Positive genetic gains of 5-58% were realised for grain yield potential and 26-46% for ear prolificacy. Whereas 1% to 37% gains were realised for secondary traits such as plant and ear height, anthesis and silking days there was barely any improvement for root and stalk lodging, and grain moisture content at harvest. However, introgressed lines displayed impressive performance per se and inter se indicating potential for commercial production. The new inbred line 71-DMLF7_88 combined early physiological maturity, high ear prolificacy and grain yield potential qualifying it as a perfect parent for the warm temperate environments. At least six hybrids were stable and adaptable while four were considered to be ideal genotypes relative to standard commercial hybrids such as PAN6Q445B which is a market leader. The exceptional hybrids, 12C20264, 12C22766, 13XH349 and 11C11774 will be advanced in South Africa.
The study also indicated significant economic gains when a shuttle programme is implemented to breed new hybrids following the introgression strategy. The “Shuttle breeding” programme attained a positive net present value (NPV) of $1, 834, 166. 00. This indicated an increase in shareholder value through an opportunity cost of 17% and 3% relative to conventional breeding programmes which are based in South Africa and Zimbabwe, respectively. Positive NPV and genetic gain achieved using the “shuttle breeding” programme makes it a viable option for small and medium scale seed companies with intention to breed and commercialise competitive products in South African.
In general, the study revealed that introgression of temperate germplasm into tropical elite inbred lines using a “shuttle breeding” programme was effective for enhancing adaptability of tropical germplasm to the South African warm temperate environments. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
|
19 |
Determinants of smallholder maize farmers' varietal choice : a case study of Mogalakwena Local Municipality Limpopo Province, South AfricaMakwela, Mokgadi Angelina January 2021 (has links)
Thesis (M. A. Agricultural Science (Agricultural Economics)) -- University of Limpopo, 2021 / Maize seeds differ according to varieties. The traditional maize varieties(also
referred to as (Landraces)are maize varieties that have been cultivated and
subjected to selection by farmers for generations. They retain a distinct identity and
lack formal crop improvement. Improved maize varieties, on the other hand, are bred
with characteristics such as drought and disease tolerance. This research was
conducted to determine the attributes preferred by farmers when making a maize
varietal choice. To be specific, the study aimed to achieve the following objectives:(i)
Identify and describe socio economic characteristics of smallholder maizefarmers’
in Mogalakwena Municipality;(ii) Analyse socioeconomic characteristics of
smallholder maize farmers in Mogalakwena Municipality;(iii)Identify different maize
varieties grown by smallholder farmers in Mogalakwena Municipality, and (iv)
determine and analyse factors influencing farmers’ choice of a maize variety.
Descriptive statistics and the Multinomial Logistic Regression Mode lwere used for
data analysis. The results of the study revealed that 64% of the respondents had
formal education. This meant that they have the capability to grasp more information,
if provided witht rainings. It was found that 75% of the farmers did not have access
to extension service which is supposed to play a significant role in agricultural
information dissemination. The most grown maize variety was landrace varieties
which constituted 59.5%. This percentage was said to be resultant from limited
access to the seed market. Infact, 80% of the farmers had to travel an average o f42
kilomteres to access the market which also had a limited number of varieties. The
Multinomial Logistic Regression Model revealed that only 5variables (Educational
level, farm size, yield, extension contact and knowledge of maize varieties) were
significant at 1%, 5%,1 %,1% and1%, respectively. The majority of farmers were old people with little access to extension service andaninad equate farming knowledge which lead to a high percentage of farmers continuing to grow landrace varieties. Based on thef indings, this study recommend further research on attributes that influence farmers varietal choice and Government intervention in provision for resources and development of existing and new infracstrcture to encourage extension service delivery
Keywords: Landrace, improve maize variety, smallholder farmer
|
20 |
Heterosis, genetic distance and path coefficient analysis in dent, flint and popcorn hybrids.Mhoswa, Lorraine. January 2013 (has links)
Maize (Zea mays L.) is one of the most important food crops in sub-Saharan Africa (SSA);
however its production is constrained by many factors. Grain yield is compromised by poor
genetic performance and poor agronomic management. This calls for need to develop
hybrids and exploiting heterosis of single crosses which are adapted to challenging
environments. Currently, there is no popcorn hybrids developed in South Africa which is
adapted to local conditions. As such, there is need to develop hybrids that cater for smallscale
farmers in marginal environments. The objectives of the study were to determine i)
standard heterosis, levels of variation and heritability for phenotypic traits in dent and flint
maize hybrids; ii) the association between genetic distances and phenotypic traits in dent and
flint maize hybrids; iii) mid-parent heterosis in popcorn hybrids, iv) the effect of secondary
traits on grain yield in dent, flint and popcorn hybrids; v) genetic diversity and the relationship
between traits in widely grown selected hybrids in Southern Africa; and vii) to compare
effectiveness of phenotypic analysis models for determining genetic distances between
hybrids. Popcorn, dent and flint hybrids were evaluated at two sites. The data was analysed
using SAS, Genstat and Power marker statistical packages. The results revealed that the
relationship between genetic distance and heterosis is dependent on the environment.
Hybrids in top 10 at both sites were different indicating that there was a significant genotype x
environment interaction. 13 new heterotic patterns that performed better than the controls can
be utilized in heterosis breeding; however there is need to test them in different environments
to check on their stability. Grain texture cannot be used to discriminate hybrids for yield
because all patterns of dent x dent, dent x flint and flint x flint were present in the top 10
hybrids. Lines DXL124 and DXL158 dominated parentage of the top 10 hybrid rank for yield
qualifying them as potential testers for specific combining ability in future studies. Heterosis in
popcorn hybrids that performed better than the mid-parent can be utilized in heterosis
breeding to exploit vigour, though there is need to test the hybrids in a number of different
environments. The main direct factors contributing to yield were ear prolificacy, ear aspect,
number of plants and shelling percentages qualifying them to be selected to boost grain yield.
Phenotypic data and 91 SNP markers were used to estimate the genetic distance between
the hybrids. The results indicated that hybrids that were in the same cluster belong to the
same brand and were related in origin and pedigree. Both molecular and phenotypic data
were effective in discriminating the hybrids into different clusters according to genetic
background. SNP markers revealed nine clusters of hybrids, 12-trait model revealed eight
clusters and five-trait model revealed six clusters at 85% genetic distance. The study
indicates strategies that can be adopted to boost grain yield in dent, flint and popcorn hybrids. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
|
Page generated in 0.8433 seconds