• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The expression, regulation and effects of inducible nitric oxide synthase in hibernating myocardium

Warner, Anke Sigrid. January 2002 (has links) (PDF)
Amendments inserted at back. "May 2002" Includes bibliographical references (leaves 237-290) Experiments described in this thesis address the potential role of inducible nitric oxide synthase (iNOS) in hibernating myocardium. Specifically it was sought to establish a cellular model of hibernating myocardium and investigate the expression, regulation and effects of iNOS in this model. Experiments were performed using primary cultures of neonatal rat ventricular myocytes.
2

The expression, regulation and effects of inducible nitric oxide synthase in hibernating myocardium / Anke Sigrid Warner.

Warner, Anke Sigrid January 2002 (has links)
Amendments inserted at back. / "May 2002" / Includes bibliographical references (leaves 237-290) / xvii, 290 leaves : ill., plates (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Experiments described in this thesis address the potential role of inducible nitric oxide synthase (iNOS) in hibernating myocardium. Specifically it was sought to establish a cellular model of hibernating myocardium and investigate the expression, regulation and effects of iNOS in this model. Experiments were performed using primary cultures of neonatal rat ventricular myocytes. / Thesis (Ph.D.)--University of Adelaide, Dept. of Medicine, 2002
3

Cellular electrophysiological and mechanical effects of organ preservation solutions on endothelial function in resistance coronary and pulmonary arteries: implications in heart and lung transplantation.

January 2006 (has links)
Wu Min. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 87-114). / Abstracts in English and Chinese. / Declaration --- p.i / Acknowledgement --- p.ii / Publication list --- p.iii / Abstract (English) --- p.xi / Abstract (Chinese) --- p.xiv / Abbreviations --- p.xvi / List of figures / tables --- p.xviii / Chapter Chapter 1. --- General Introduction --- p.1 / Chapter 1.1 --- Endothelial function in the regulation of vascular tone --- p.1 / Chapter 1.1.1 --- NO --- p.2 / Chapter 1.1.2 --- PGI2 --- p.5 / Chapter 1.1.3 --- EDHF --- p.6 / Chapter 1.2 --- Alteration of endothelial functions after preservation with cardioplegia /organ preservation solutions in the coronary and pulmonary microcirculations --- p.18 / Chapter 1.2.1 --- Cardioplegia/organ preservation solutions --- p.21 / Chapter 1.2.2 --- Effect of Cardioplegia/organ preservation solutions on endothelial function --- p.22 / Chapter 1.2.2.1 --- Effect of K+ on endothelial function --- p.23 / Chapter 1.2.2.2 --- Effect of other components on endothelial function --- p.24 / Chapter Chapter 2. --- Materials and Methods --- p.26 / Chapter 2.1 --- Isometric force study in coronary/pulmonary resistance arteries --- p.26 / Chapter 2.1.1 --- Preparation of vessels --- p.26 / Chapter 2.1.1.1 --- Preparation of porcine coronary small arteries --- p.26 / Chapter 2.1.1.2 --- Preparation of porcine pulmonary small arteries --- p.26 / Chapter 2.1.2 --- Technique of setting up --- p.29 / Chapter 2.1.2.1 --- Mounting of small vessels --- p.29 / Chapter 2.1.2.2 --- Normalization procedure for small vessels --- p.29 / Chapter 2.1.3 --- EDHF-mediated vasorelaxation --- p.30 / Chapter 2.1.3.1 --- Precontraction and stimuli of EDHF --- p.30 / Chapter 2.1.3.2 --- """True"" response of EDHF" --- p.31 / Chapter 2.1.4 --- Data acquisition and analysis --- p.32 / Chapter 2.2 --- Electrophysiological study --- p.32 / Chapter 2.2.1 --- Preparation of small porcine coronary/pulmonary arteries --- p.32 / Chapter 2.2.2 --- Preparation of microelectrode --- p.32 / Chapter 2.2.3 --- Impaling of microelectrode --- p.33 / Chapter 2.2.4 --- Recording of membrane potential --- p.33 / Chapter 2.3 --- Statistical analysis --- p.34 / Chapter 2.4 --- Chemicals --- p.34 / Chapter Chapter 3. --- Effects of Celsior Solution on Endothelial Function in Resistance Coronary Arteries Compared to St. Thomas' Hospital Solution --- p.37 / Chapter 3.1 --- Abstract --- p.37 / Chapter 3.2 --- Introduction --- p.38 / Chapter 3.3 --- Experimental design and analysis --- p.40 / Chapter 3.3.1 --- Vessel preparation --- p.40 / Chapter 3.3.2 --- Normalization --- p.40 / Chapter 3:3.3 --- "Relaxation study: BK-induced, EDHF-mediated relaxation" --- p.41 / Chapter 3.3.4 --- Cellular electrophysiological study: EDHF-mediated cellular hyperpolarization and associated relaxation --- p.41 / Chapter 3.3.5 --- Data analysis --- p.42 / Chapter 3.4 --- Results --- p.43 / Chapter 3.4.1 --- Relaxation study --- p.43 / Chapter 3.4.1.1 --- Resting force --- p.43 / Chapter 3.4.1.2 --- U46619-induced precontraction --- p.43 / Chapter 3.4.1.3 --- EDHF-mediated relaxation --- p.43 / Chapter 3.4.2 --- Electrophysiological studies --- p.44 / Chapter 3.4.2.1 --- Resting membrane potential --- p.44 / Chapter 3.4.2.2 --- EDHF-mediated cellular hyperpolarization --- p.45 / Chapter 3.4.2.3 --- Cellular hyperpolarization-associated relaxation --- p.45 / Chapter 3.5 --- Discussion --- p.46 / Chapter 3.5.1 --- Effects of Celsior solution on endothelial function --- p.47 / Chapter 3.5.2 --- Effects of ST solution on EDHF-mediated function --- p.48 / Chapter 3.5.3 --- Comparison between Celsior and ST solutions on EDHF-mediated function --- p.48 / Chapter 3.5.4 --- Clinical implications --- p.49 / Chapter Chapter 4. --- Effects of Perfadex and Celsior Solution on Endothelial Function in Resistance Pulmonary Arteries --- p.57 / Chapter 4.1 --- Abstract --- p.57 / Chapter 4.2 --- Introduction --- p.58 / Chapter 4.3 --- Experimental design and analysis --- p.59 / Chapter 4.3.1 --- Vessel Preparation --- p.59 / Chapter 4.3.2 --- Normalization --- p.60 / Chapter 4.3.3 --- Isometric force study --- p.60 / Chapter 4.3.4 --- Electrophysiological studies --- p.61 / Chapter 4.3.5 --- Data analysis --- p.61 / Chapter 4.4 --- Results --- p.62 / Chapter 4.4.1 --- Relaxation study: EDHF-mediated relaxation --- p.62 / Chapter 4.4.1.1 --- Resting force --- p.62 / Chapter 4.4.1.2 --- U46619-induced precontraction --- p.62 / Chapter 4.4.1.3 --- EDHF-mediated relaxation --- p.62 / Chapter 4.4.2 --- Electrophysiological studies --- p.63 / Chapter 4.4.2.1 --- Resting membrane potential --- p.63 / Chapter 4.4.2.2 --- EDHF-mediated cellular hyperpolarization --- p.64 / Chapter 4.4.2.3 --- Cellular hyperpolarization-associated relaxation --- p.64 / Chapter 4.5 --- Discussion --- p.65 / Chapter 4.5.1 --- Effects of Celsior solution on endothelial function during cardiopulmonary surgery --- p.65 / Chapter 4.5.2 --- Effects of Perfadex solution on EDHF-mediated endothelial function --- p.66 / Chapter 4.5.3 --- Comparison between Celsior and Perfadex solutions on EDHF-mediated function --- p.66 / Chapter 4.5.4 --- Clinical implications --- p.67 / Chapter Chapter 5. --- Exploration of the Nature of EDHF - the Effect of H2O2 on the Membrane Potential in the Rat Small Mesenteric Arteries --- p.73 / Chapter Chapter 6. --- General Discussion --- p.75 / Chapter 6.1 --- EDHF-mediated endothelial function in porcine coronary and pulmonary circulation --- p.75 / Chapter 6.1.1 --- Role of EDHF in the regulation of porcine coronary arterial tone --- p.75 / Chapter 6.1.2 --- Role of EDHF in the regulation of porcine pulmonary arterial tone --- p.76 / Chapter 6.2 --- Alteration of EDHF-mediated endothelial functions after exposure to organ preservation solutions --- p.77 / Chapter 6.2.1 --- Effects of hyperkalemic solution on EDHF-mediated endothelial function in coronary and pulmonary circulation --- p.78 / Chapter 6.2.2 --- Effects of low-potassium-based preservation solution on EDHF-mediated endothelial function in pulmonary circulation --- p.79 / Chapter 6.2.3 --- Comparison between hyperkalemic solution and low-potassium-based preservation solution on EDHF-mediated endothelial function --- p.80 / Chapter 6.2.4 --- Effects of other component of organ preservation solutions on EDHF-mediated endothelial function --- p.81 / Chapter 6.3 --- Clinical implications --- p.82 / Chapter 6.4 --- The effect of H202 on the membrane potential in rat small mesenteric arteries --- p.83 / Chapter 6.5 --- Limitation of the study --- p.84 / Chapter 6.6 --- Future investigations --- p.85 / Chapter 6.7 --- Conclusions --- p.85 / References --- p.87

Page generated in 0.0831 seconds