• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hypoxemia Attenuates Coronary Autoregulation

Kim, Song-Jung 08 1900 (has links)
The effect of hypoxemia on coronary autoregulation was investigated in nine anesthetized, open-chest dogs. The anterior descending coronary artery (LAD) was cannulated and perfused with normoxic arterial blood and with moderately hypoxic blood (0₂ content = 10 + 1 ml 0₂ /dl). LAD blood flow was measured as perfusion pressure was varied from 140 to 40 mmHg. At perfusion pressures at and above 40 mmHg, hypoxemia significantly increased LAD flow. During normoxia, the autoregulatory closed-loop gain (Gc) was significantly greater than zero at perfusion pressures from 60 to 120 mmHg. During hypoxemia, Gc was greater than zero only at perfusion pressures from 80 to 100 mmHg. During hypoxemia, LAD blood flow increased sufficiently to maintain oxygen delivery and consumption constant, but the range and potency of autoregulation was attenuated.
2

Contribution of K+ Channels to Coronary Dysfunction in Metabolic Syndrome

Watanabe, Reina 24 June 2009 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Coronary microvascular function is markedly impaired by the onset of the metabolic syndrome and may be an important contributor to the increased cardiovascular events associated with this mutlifactorial disorder. Despite increasing appreciation for the role of coronary K+ channels in regulation of coronary microvascular function, the contribution of K+ channels to the deleterious influence of metabolic syndrome has not been determined. Accordingly, the overall goal of this investigation was to delineate the mechanistic contribution of K+ channels to coronary microvascular dysfunction in metabolic syndrome. Experiments were performed on Ossabaw miniature swine fed a normal maintenance diet or an excess calorie atherogenic diet that induces the classical clinical features of metabolic syndrome including obesity, insulin resistance, impaired glucose tolerance, dyslipidemia, hyperleptinemia, and atherosclerosis. Experiments involved in vivo studies of coronary blood flow in open-chest anesthetized swine as well as conscious, chronically instrumented swine and in vitro studies in isolated coronary arteries, arterioles, and vascular smooth muscle cells. We found that coronary microvascular dysfunction in the metabolic syndrome significantly impairs coronary vasodilation in response to metabolic as well as ischemic stimuli. This impairment was directly related to decreased membrane trafficking and functional expression of BKCa channels in vascular smooth muscle cells that was accompanied by augmented L-type Ca2+ channel activity and increased intracellular Ca2+ concentration. In addition, we discovered that impairment of coronary vasodilation in the metabolic syndrome is mediated by reductions in the functional contribution of voltage-dependent K+ channels to the dilator response. Taken together, findings from this investigation demonstrate that the metabolic syndrome markedly attenuates coronary microvascular function via the diminished contribution of K+ channels to the overall control of coronary blood flow. Our data implicate impaired functional expression of coronary K+ channels as a critical mechanism underlying the increased incidence of cardiac arrhythmias, infarction and sudden cardiac death in obese patients with the metabolic syndrome.
3

Role of Voltage-Dependent K+ and Ca2+ Channels in Coronary Electromechanical Coupling: Effects of Metabolic Syndrome

Berwick, Zachary C. 19 October 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Regulation of coronary blood flow is a highly dynamic process that maintains the delicate balance between oxygen delivery and metabolism in order to preserve cardiac function. Evidence to date support the finding that Kv and Cav1.2 channels are critical end-effectors in modulating vasomotor tone and blood flow. Yet the role for these channels in the coronary circulation in addition to their interdependent relationship remains largely unknown. Importantly, there is a growing body of evidence that suggests obesity and its pathologic components, i.e. metabolic syndrome (MetS), may alter coronary ion channel function. Accordingly, the overall goal of this investigation was to examine the contribution coronary Kv and Cav1.2 channels to the control of coronary blood flow in response to various physiologic conditions. Findings from this study also evaluated the potential for interaction between these channels, i.e. electromechanical coupling, and the impact obesity/MetS has on this mechanism. Using a highly integrative experimental approach, results from this investigation indicate Kv and Cav1.2 channels significantly contribute to the control of coronary blood flow in response to alterations in coronary perfusion pressure, cardiac ischemia, and during increases in myocardial metabolism. In addition, we have identified that impaired functional expression and electromechanical coupling of Kv and Cav1.2 channels represents a critical mechanism underlying coronary dysfunction in the metabolic syndrome. Thus, findings from this investigation provide novel mechanistic insight into the patho-physiologic regulation of Kv and Cav1.2 channels and significantly improve our understanding of obesity-related cardiovascular disease.

Page generated in 0.1658 seconds