Spelling suggestions: "subject:"correções quântica à gravitacional"" "subject:"correções quântica à gravitacionais""
1 |
Método perturbativo aplicado a gravidade de quarta ordem e a relatividade geral corrigida pelo grupo de renormalizaçãoMauro Filho, Sebastião 26 January 2017 (has links)
Submitted by isabela.moljf@hotmail.com (isabela.moljf@hotmail.com) on 2017-08-09T11:18:45Z
No. of bitstreams: 1
sebastiaomaurofilho.pdf: 637836 bytes, checksum: 0629945b7a9ce79385454dd5fb18c92f (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-08-09T13:36:52Z (GMT) No. of bitstreams: 1
sebastiaomaurofilho.pdf: 637836 bytes, checksum: 0629945b7a9ce79385454dd5fb18c92f (MD5) / Made available in DSpace on 2017-08-09T13:36:52Z (GMT). No. of bitstreams: 1
sebastiaomaurofilho.pdf: 637836 bytes, checksum: 0629945b7a9ce79385454dd5fb18c92f (MD5)
Previous issue date: 2017-01-26 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta tese aplicamos o método perturbativo, em nível clássico, à Gravidade de Quarta Ordem e à Relatividade Geral estendida pelo Grupo de Renormalização (RGGR). Para explorar as perturbações métricas, na teoria da Gravidade de Quarta Ordem, nós usamos a formulação de campos auxiliares para uma métrica de fundo curva e arbitrária. O caso em que a métrica de fundo é Ricci-plano foi elaborada em detalhes. Notamos que o uso de campos auxiliares tornará a análise perturbativa mais simples e os resultados mais claros. Como uma aplicação, nós reconsideramos os resultados para a estabilidade do buraco negro de Schwarzschild e discutimos alguns avanços para o buraco negro de Kerr na Gravidade de Quarta Ordem. Nós também usamos o método perturbativo para explorar os limites newtoniano e pós-newtoniano de RGGR. No Sistema Solar, RGGR depende de um único parâmetro adimensional /9, e ele é tal que para /9 = 0 a Relatividade Geral é obtida. Para estudar o limite newtoniano fizemos uso da técnica de transformação conforme e da dinâmica do vetor de Laplace-Runge-Lenz (LRL). Isso nos permitiu estimar o limite superior de P dentro do Sistema Solar em dois casos: um quando é levado em conta o efeito de potencial externo e outro quando ele não é considerado. Anteriormente, foi encontrado que este parâmetro satisfaz o seguinte limite /9 < 10-21, quando o efeito de potencial externo é ignorado. Entretanto, como nós mostramos esse limite cresce cinco ordens de magnitude P < 10-16 quando tal efeito é considerado. Além disso, mostramos que para um certo limite, RGGR pode ser facilmente testada usando o formalismo parametrizado pós-newtoniano (PPN). / In this thesis we applied the perturbative method, on a classical level, to the fourth-order gravity and the Renormalization Group extended General Relativity (RGGR). We will consider auxiliary fields formulation for the general fourth-order gravity on an arbitrary curved back-ground to analyze the metric perturbations in this theory. The case of a Ricci-flat background was elaborated in detail. We noticed that the use of auxiliary fields helps to make the pertur-bative analysis easier and the results more clear. As an application we reconsider the stability problem of the Schwarzschild and Kerr black holes in the fourth-order gravity. We also used the perturbative method to develop the Newtonian and post-Newtonian limits of RGGR. In the Solar System, RGGR depends on a single dimensionless parameter 0, and this parameter is such that for 0 = 0 one fully recovers General Relativity in the Solar System. In order to study the Newtonian limit we used the conformal transformation technique and the dynamics of the Laplace-Runge-Lenz vector (LRL). In this way, we could estimate the upper bound for 0 within the Solar System in two case: the case where the external potential effect is considered and the another when it is not considered. Previously this parameter was constrained to be 0 < 10-21, without considering the external potential effect. However, as we showed, when such an effect is considered this bound increases by five orders of magnitude, O < 10-16. Moreover, we showed that under a certain approximation RGGR can be easily tested using the parametrized post-Newtonian (PPN) formalism.
|
Page generated in 0.0952 seconds