• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Ecology and Evolution of Pollinator-mediated Interactions Among Spring Flowering Plants

Hensel, Lisa E 06 September 2011 (has links)
Pollinator sharing in mixed species communities is expected to significantly contribute to mating patterns in contemporary populations but may also affect the evolutionary trajectory of traits associated with plant mating. In this thesis, I considered how the spring environment and pollinator sharing may contribute to the widespread convergence in traits among spring flowering species using comparative biology. The proposed correlation between a spring flowering phenology and white or light floral colour, fleshy fruits, woody growth forms and understory occupation is confirmed. In addition, I examined the effects of pollinator responses to community and population traits to determine the relative importance of inter- and intraspecific interactions in pollinator mediated reproductive success of a spring flowering species, Trillium grandiflorum. In this study, the reproductive success of T. grandiflorum was pollen limited. However, the magnitude of pollen limitation was influenced only by intraspecific density and varied independently of community diversity. The results of this thesis contribute significantly to our understanding of pollinator-mediated interactions in spring flowering communities but also highlight future avenues of investigation.
2

The Ecology and Evolution of Pollinator-mediated Interactions Among Spring Flowering Plants

Hensel, Lisa E 06 September 2011 (has links)
Pollinator sharing in mixed species communities is expected to significantly contribute to mating patterns in contemporary populations but may also affect the evolutionary trajectory of traits associated with plant mating. In this thesis, I considered how the spring environment and pollinator sharing may contribute to the widespread convergence in traits among spring flowering species using comparative biology. The proposed correlation between a spring flowering phenology and white or light floral colour, fleshy fruits, woody growth forms and understory occupation is confirmed. In addition, I examined the effects of pollinator responses to community and population traits to determine the relative importance of inter- and intraspecific interactions in pollinator mediated reproductive success of a spring flowering species, Trillium grandiflorum. In this study, the reproductive success of T. grandiflorum was pollen limited. However, the magnitude of pollen limitation was influenced only by intraspecific density and varied independently of community diversity. The results of this thesis contribute significantly to our understanding of pollinator-mediated interactions in spring flowering communities but also highlight future avenues of investigation.
3

The Ecology and Evolution of Pollinator-mediated Interactions Among Spring Flowering Plants

Hensel, Lisa E 06 September 2011 (has links)
Pollinator sharing in mixed species communities is expected to significantly contribute to mating patterns in contemporary populations but may also affect the evolutionary trajectory of traits associated with plant mating. In this thesis, I considered how the spring environment and pollinator sharing may contribute to the widespread convergence in traits among spring flowering species using comparative biology. The proposed correlation between a spring flowering phenology and white or light floral colour, fleshy fruits, woody growth forms and understory occupation is confirmed. In addition, I examined the effects of pollinator responses to community and population traits to determine the relative importance of inter- and intraspecific interactions in pollinator mediated reproductive success of a spring flowering species, Trillium grandiflorum. In this study, the reproductive success of T. grandiflorum was pollen limited. However, the magnitude of pollen limitation was influenced only by intraspecific density and varied independently of community diversity. The results of this thesis contribute significantly to our understanding of pollinator-mediated interactions in spring flowering communities but also highlight future avenues of investigation.
4

The Ecology and Evolution of Pollinator-mediated Interactions Among Spring Flowering Plants

Hensel, Lisa E January 2011 (has links)
Pollinator sharing in mixed species communities is expected to significantly contribute to mating patterns in contemporary populations but may also affect the evolutionary trajectory of traits associated with plant mating. In this thesis, I considered how the spring environment and pollinator sharing may contribute to the widespread convergence in traits among spring flowering species using comparative biology. The proposed correlation between a spring flowering phenology and white or light floral colour, fleshy fruits, woody growth forms and understory occupation is confirmed. In addition, I examined the effects of pollinator responses to community and population traits to determine the relative importance of inter- and intraspecific interactions in pollinator mediated reproductive success of a spring flowering species, Trillium grandiflorum. In this study, the reproductive success of T. grandiflorum was pollen limited. However, the magnitude of pollen limitation was influenced only by intraspecific density and varied independently of community diversity. The results of this thesis contribute significantly to our understanding of pollinator-mediated interactions in spring flowering communities but also highlight future avenues of investigation.

Page generated in 0.1316 seconds