• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 7
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Correlated Random Walk with Boundaries. A Combinatorial Solution

Böhm, Walter January 1999 (has links) (PDF)
The transition fundions for the correlated random walk with two absorbing boundaries are derived by means of a combinatorial construction which is based on Krattenthaler's Theorem for counting lattice paths with turns. Results for walks with one boundary and for unrestricted walks are presented as special cases. Finally we give an asymptotic formula, which proves to be useful for computational purposes. (author's abstract) / Series: Forschungsberichte / Institut für Statistik
2

An Agent Based Gene Flow Model

Foster, Erich 30 April 2009 (has links)
The understanding of gene movement in plant species is critical to the management of both plant and animal species reliant on that plant. Pollen is the mechanism by which plants pass their genetic material from one generation to the next. Pollen dispersal studies have focused primarily on purely random diffusion processes, while this may be a good assumption for species pollinated mainly by abiotic means, such as wind, it is most likely an over simplification for species that are pollinated by biotic means, such as insects [3]. Correlated random walk (CRW) models are a model of animal movement [10] and have been successfully used to explore the movement of animals in varying ecological contexts [1]. An agent-based model (ABM) is developed to describe pollen movement via insects as a correlated random walk (CRW). This model is used to explore how insect path lengths and pollen distribution are affected by the varying turning angle and plant density.
3

Random Walk With Absorbing Barriers Modeled by Telegraph Equation With Absorbing Boundaries

Fan, Rong 01 August 2018 (has links)
Organisms have movements that are usually modeled by particles’ random walks. Under some mathematical technical assumptions the movements are described by diffusion equations. However, empirical data often show that the movements are not simple random walks. Instead, they are correlated random walks and are described by telegraph equations. This thesis considers telegraph equations with and without bias corresponding to correlated random walks with and without bias. Analytical solutions to the equations with absorbing boundary conditions and their mean passage times are obtained. Numerical simulations of the corresponding correlated random walks are also performed. The simulation results show that the solutions are approximated very well by the corresponding correlated random walks and the mean first passage times are highly consistent with those from simulations on the corresponding random walks. This suggests that telegraph equations can be a good model for organisms with the movement pattern of correlated random walks. Furthermore, utilizing the consistency of mean first passage times, we can estimate the parameters of telegraph equations through the mean first passage time, which can be estimated through experimental observation. This provides biologists an easy way to obtain parameter values. Finally, this thesis analyzes the velocity distribution and correlations of movement steps of amoebas, leaving fitting the movement data to telegraph equations as future work.
4

Optimal distributed detection and estimation in static and mobile wireless sensor networks

Sun, Xusheng 27 June 2012 (has links)
This dissertation develops optimal algorithms for distributed detection and estimation in static and mobile sensor networks. In distributed detection or estimation scenarios in clustered wireless sensor networks, sensor motes observe their local environment, make decisions or quantize these observations into local estimates of finite length, and send/relay them to a Cluster-Head (CH). For event detection tasks that are subject to both measurement errors and communication errors, we develop an algorithm that combines a Maximum a Posteriori (MAP) approach for local and global decisions with low-complexity channel codes and processing algorithms. For event estimation tasks that are subject to measurement errors, quantization errors and communication errors, we develop an algorithm that uses dithered quantization and channel compensation to ensure that each mote's local estimate received by the CH is unbiased and then lets the CH fuse these estimates into a global one using a Best Linear Unbiased Estimator (BLUE). We then determine both the minimum energy required for the network to produce an estimate with a prescribed error variance and show how this energy must be allocated amongst the motes in the network. In mobile wireless sensor networks, the mobility model governing each node will affect the detection accuracy at the CH and the energy consumption to achieve this level of accuracy. Correlated Random Walks (CRWs) have been proposed as mobility models that accounts for time dependency, geographical restrictions and nonzero drift. Hence, the solution to the continuous-time, 1-D, finite state space CRW is provided and its statistical behavior is studied both analytically and numerically. The impact of the motion of sensor on the network's performance is also studied.
5

Quantitative analysis of single particle tracking experiments: applying ecological methods in cellular biology

Rajani, Vishaal Unknown Date
No description available.
6

Quantitative analysis of single particle tracking experiments: applying ecological methods in cellular biology

Rajani, Vishaal 11 1900 (has links)
Single-particle tracking (SPT) is a method used to study the diffusion of various molecules within the cell. SPT involves tagging proteins with optical labels and observing their individual two-dimensional trajectories with a microscope. The analysis of this data provides important information about protein movement and mechanism, and is used to create multistate biological models. One of the challenges in SPT analysis is the variety of complex environments that contribute to heterogeneity within movement paths. In this thesis, we explore the limitations of current methods used to analyze molecular movement, and adapt analytical methods used in animal movement analysis, such as correlated random walks and first-passage time variance, to SPT data of leukocyte function-associated antigen-1 (LFA-1) integral membrane proteins. We discuss the consequences of these methods in understanding different types of heterogeneity in protein movement behaviour, and provide support to results from current experimental work. / Applied Mathematics
7

Mathematical modelling and analysis of aspects of bacterial motility

Rosser, Gabriel A. January 2012 (has links)
The motile behaviour of bacteria underlies many important aspects of their actions, including pathogenicity, foraging efficiency, and ability to form biofilms. In this thesis, we apply mathematical modelling and analysis to various aspects of the planktonic motility of flagellated bacteria, guided by experimental observations. We use data obtained by tracking free-swimming Rhodobacter sphaeroides under a microscope, taking advantage of the availability of a large dataset acquired using a recently developed, high-throughput protocol. A novel analysis method using a hidden Markov model for the identification of reorientation phases in the tracks is described. This is assessed and compared with an established method using a computational simulation study, which shows that the new method has a reduced error rate and less systematic bias. We proceed to apply the novel analysis method to experimental tracks, demonstrating that we are able to successfully identify reorientations and record the angle changes of each reorientation phase. The analysis pipeline developed here is an important proof of concept, demonstrating a rapid and cost-effective protocol for the investigation of myriad aspects of the motility of microorganisms. In addition, we use mathematical modelling and computational simulations to investigate the effect that the microscope sampling rate has on the observed tracking data. This is an important, but often overlooked aspect of experimental design, which affects the observed data in a complex manner. Finally, we examine the role of rotational diffusion in bacterial motility, testing various models against the analysed data. This provides strong evidence that R. sphaeroides undergoes some form of active reorientation, in contrast to the mainstream belief that the process is passive.

Page generated in 0.0742 seconds