Spelling suggestions: "subject:"correntes dde densidade"" "subject:"correntes dee densidade""
1 |
Modelagem física de correntes de densidade conservativas em canal de declividade variávelFabian, Samuel January 2002 (has links)
Este estudo avalia a dinâmica de correntes de densidade conservativas através da análise da influência dos principais parâmetros que atuam no escoamento: a diferença de massa específica (Dr) entre os fluidos, a declividade do canal e o volume inicial. As correntes simuladas com soluções salinas em canal unidimensional utilizaram massa específica inicial numa faixa que variou de 1010 kg/m3 a 1045 kg/m3. Também foram conduzidos ensaios em canal bidimensional onde a declividade foi variada de –0,5º a 4º, utilizando soluções salinas de 1010 kg/m3 e 1022 kg/m3. Em ambos os canais, os volumes iniciais foram variados para verificar sua influência no escoamento. Os resultados mostraram que a variação de apenas 1% em Dr provoca um acréscimo de 25% na velocidade média da corrente, indicando que esse parâmetro é determinante na sua dinâmica. O escoamento da corrente apresenta um regime não permanente, sendo que há uma aceleração no início do movimento até que se atinja a velocidade máxima, seguido de uma desaceleração da corrente. Durante o escoamento, a velocidade de avanço da cabeça da corrente apresenta oscilações com uma freqüência principal definida. A correlação dessa freqüência com a freqüência de desprendimento de vórtices, através do número de Strouhal (St), é forte, sugerindo que na simulação física de correntes de densidade, não só o número de Froude Densimétrico deve ser respeitado, mas também o número de Strouhal.
|
2 |
Modelagem física de correntes de densidade conservativas em canal de declividade variávelFabian, Samuel January 2002 (has links)
Este estudo avalia a dinâmica de correntes de densidade conservativas através da análise da influência dos principais parâmetros que atuam no escoamento: a diferença de massa específica (Dr) entre os fluidos, a declividade do canal e o volume inicial. As correntes simuladas com soluções salinas em canal unidimensional utilizaram massa específica inicial numa faixa que variou de 1010 kg/m3 a 1045 kg/m3. Também foram conduzidos ensaios em canal bidimensional onde a declividade foi variada de –0,5º a 4º, utilizando soluções salinas de 1010 kg/m3 e 1022 kg/m3. Em ambos os canais, os volumes iniciais foram variados para verificar sua influência no escoamento. Os resultados mostraram que a variação de apenas 1% em Dr provoca um acréscimo de 25% na velocidade média da corrente, indicando que esse parâmetro é determinante na sua dinâmica. O escoamento da corrente apresenta um regime não permanente, sendo que há uma aceleração no início do movimento até que se atinja a velocidade máxima, seguido de uma desaceleração da corrente. Durante o escoamento, a velocidade de avanço da cabeça da corrente apresenta oscilações com uma freqüência principal definida. A correlação dessa freqüência com a freqüência de desprendimento de vórtices, através do número de Strouhal (St), é forte, sugerindo que na simulação física de correntes de densidade, não só o número de Froude Densimétrico deve ser respeitado, mas também o número de Strouhal.
|
3 |
Modelagem física de correntes de densidade não conservativas em canal tridimensional de geometria simplificadaManica, Rafael January 2002 (has links)
Este trabalho apresenta simulações físicas de correntes de densidade não conservativas em canal bidimensional e tridimensional. Primeiramente, foram desenvolvidas a seleção e caracterização de materiais granulares, bem como a classificação de tamanhos de grãos adequados capazes de simular tais correntes. Foram desenvolvidas também, metodologias de ensaios, abordando os detalhes como a preparação de materiais, equipamentos e instalações. Como resultados foram selecionados cinco materiais para as simulações, a areia (0,125mm a 0,063mm); os calcários B e C (0,125mm a 0,063mm) e os carvões 205 e carvão 207 (0,354mm a 0,063mm). Através de ensaios por fluxo contínuo de material, caracterizado por uma injeção de mistura durante um período de tempo, foram estudados as características geométricas, dinâmicas e os padrões de deposição destas correntes. Nestes ensaios foram variados o material granular e seu tamanho de grão utilizado na mistura e a concentração da mistura. Observou-se que: a velocidade da corrente aumenta à medida que a massa específica/concentração da mistura aumenta; que à medida que o tamanho do grão diminui, para um mesmo material com a mesma massa específica na mistura, a velocidade aumenta; a altura da cabeça da corrente aumenta à medida que a massa específica/concentração da mistura diminui; a distribuição dos volumes de depósitos apresentou uma tendência geral, com acúmulo de material, da ordem de 90%, nas regiões mais proximais do canal (0-75cm) e acúmulo de material, da ordem de 5%, canal nas regiões mais distais do canal (150-250cm). A distribuição dos grãos indica que o tamanho dos grãos vai diminuindo com a distância, estando as frações maiores (correspondentes a areia fina) presentes nas zonas mais proximais do canal (até 50cm) e com os grãos mais finos chegando até as regiões mais distais do canal (250cm). Foi avaliada, também, a influência da vazão inicial e do volume total de material sobre o desenvolvimento e depósitos das correntes de densidade não conservativas. As características medidas foram a evolução e as velocidades da corrente, além da espessura, granulometria e formas de fundo dos depósitos gerados. Como resultados foi verificado que a velocidade de avanço, espessuras, formas de fundo e distribuição granulométricas do material estão intimamente mais ligada à vazão de entrada do que ao volume total. Nota-se que, a vazão condiciona a tendência geral da evolução da corrente (padrão de variação da velocidade e da deposição) e as formas de fundo, enquanto que o volume de material injetado é responsável apenas pela magnitude dessas variações.
|
4 |
Modelagem física de correntes de densidade não conservativas em canal tridimensional de geometria simplificadaManica, Rafael January 2002 (has links)
Este trabalho apresenta simulações físicas de correntes de densidade não conservativas em canal bidimensional e tridimensional. Primeiramente, foram desenvolvidas a seleção e caracterização de materiais granulares, bem como a classificação de tamanhos de grãos adequados capazes de simular tais correntes. Foram desenvolvidas também, metodologias de ensaios, abordando os detalhes como a preparação de materiais, equipamentos e instalações. Como resultados foram selecionados cinco materiais para as simulações, a areia (0,125mm a 0,063mm); os calcários B e C (0,125mm a 0,063mm) e os carvões 205 e carvão 207 (0,354mm a 0,063mm). Através de ensaios por fluxo contínuo de material, caracterizado por uma injeção de mistura durante um período de tempo, foram estudados as características geométricas, dinâmicas e os padrões de deposição destas correntes. Nestes ensaios foram variados o material granular e seu tamanho de grão utilizado na mistura e a concentração da mistura. Observou-se que: a velocidade da corrente aumenta à medida que a massa específica/concentração da mistura aumenta; que à medida que o tamanho do grão diminui, para um mesmo material com a mesma massa específica na mistura, a velocidade aumenta; a altura da cabeça da corrente aumenta à medida que a massa específica/concentração da mistura diminui; a distribuição dos volumes de depósitos apresentou uma tendência geral, com acúmulo de material, da ordem de 90%, nas regiões mais proximais do canal (0-75cm) e acúmulo de material, da ordem de 5%, canal nas regiões mais distais do canal (150-250cm). A distribuição dos grãos indica que o tamanho dos grãos vai diminuindo com a distância, estando as frações maiores (correspondentes a areia fina) presentes nas zonas mais proximais do canal (até 50cm) e com os grãos mais finos chegando até as regiões mais distais do canal (250cm). Foi avaliada, também, a influência da vazão inicial e do volume total de material sobre o desenvolvimento e depósitos das correntes de densidade não conservativas. As características medidas foram a evolução e as velocidades da corrente, além da espessura, granulometria e formas de fundo dos depósitos gerados. Como resultados foi verificado que a velocidade de avanço, espessuras, formas de fundo e distribuição granulométricas do material estão intimamente mais ligada à vazão de entrada do que ao volume total. Nota-se que, a vazão condiciona a tendência geral da evolução da corrente (padrão de variação da velocidade e da deposição) e as formas de fundo, enquanto que o volume de material injetado é responsável apenas pela magnitude dessas variações.
|
5 |
Modelagem física de correntes de densidade não conservativas em canal tridimensional de geometria simplificadaManica, Rafael January 2002 (has links)
Este trabalho apresenta simulações físicas de correntes de densidade não conservativas em canal bidimensional e tridimensional. Primeiramente, foram desenvolvidas a seleção e caracterização de materiais granulares, bem como a classificação de tamanhos de grãos adequados capazes de simular tais correntes. Foram desenvolvidas também, metodologias de ensaios, abordando os detalhes como a preparação de materiais, equipamentos e instalações. Como resultados foram selecionados cinco materiais para as simulações, a areia (0,125mm a 0,063mm); os calcários B e C (0,125mm a 0,063mm) e os carvões 205 e carvão 207 (0,354mm a 0,063mm). Através de ensaios por fluxo contínuo de material, caracterizado por uma injeção de mistura durante um período de tempo, foram estudados as características geométricas, dinâmicas e os padrões de deposição destas correntes. Nestes ensaios foram variados o material granular e seu tamanho de grão utilizado na mistura e a concentração da mistura. Observou-se que: a velocidade da corrente aumenta à medida que a massa específica/concentração da mistura aumenta; que à medida que o tamanho do grão diminui, para um mesmo material com a mesma massa específica na mistura, a velocidade aumenta; a altura da cabeça da corrente aumenta à medida que a massa específica/concentração da mistura diminui; a distribuição dos volumes de depósitos apresentou uma tendência geral, com acúmulo de material, da ordem de 90%, nas regiões mais proximais do canal (0-75cm) e acúmulo de material, da ordem de 5%, canal nas regiões mais distais do canal (150-250cm). A distribuição dos grãos indica que o tamanho dos grãos vai diminuindo com a distância, estando as frações maiores (correspondentes a areia fina) presentes nas zonas mais proximais do canal (até 50cm) e com os grãos mais finos chegando até as regiões mais distais do canal (250cm). Foi avaliada, também, a influência da vazão inicial e do volume total de material sobre o desenvolvimento e depósitos das correntes de densidade não conservativas. As características medidas foram a evolução e as velocidades da corrente, além da espessura, granulometria e formas de fundo dos depósitos gerados. Como resultados foi verificado que a velocidade de avanço, espessuras, formas de fundo e distribuição granulométricas do material estão intimamente mais ligada à vazão de entrada do que ao volume total. Nota-se que, a vazão condiciona a tendência geral da evolução da corrente (padrão de variação da velocidade e da deposição) e as formas de fundo, enquanto que o volume de material injetado é responsável apenas pela magnitude dessas variações.
|
6 |
Modelagem física de correntes de densidade conservativas em canal de declividade variávelFabian, Samuel January 2002 (has links)
Este estudo avalia a dinâmica de correntes de densidade conservativas através da análise da influência dos principais parâmetros que atuam no escoamento: a diferença de massa específica (Dr) entre os fluidos, a declividade do canal e o volume inicial. As correntes simuladas com soluções salinas em canal unidimensional utilizaram massa específica inicial numa faixa que variou de 1010 kg/m3 a 1045 kg/m3. Também foram conduzidos ensaios em canal bidimensional onde a declividade foi variada de –0,5º a 4º, utilizando soluções salinas de 1010 kg/m3 e 1022 kg/m3. Em ambos os canais, os volumes iniciais foram variados para verificar sua influência no escoamento. Os resultados mostraram que a variação de apenas 1% em Dr provoca um acréscimo de 25% na velocidade média da corrente, indicando que esse parâmetro é determinante na sua dinâmica. O escoamento da corrente apresenta um regime não permanente, sendo que há uma aceleração no início do movimento até que se atinja a velocidade máxima, seguido de uma desaceleração da corrente. Durante o escoamento, a velocidade de avanço da cabeça da corrente apresenta oscilações com uma freqüência principal definida. A correlação dessa freqüência com a freqüência de desprendimento de vórtices, através do número de Strouhal (St), é forte, sugerindo que na simulação física de correntes de densidade, não só o número de Froude Densimétrico deve ser respeitado, mas também o número de Strouhal.
|
7 |
Caracterização física de correntes de densidade em ambientes salinos sob diferentes contrastes de densidadeBoffo, Carolina Holz January 2010 (has links)
O presente trabalho tem como principal objetivo determinar, através de simulações físicas de correntes de densidade, quais concentrações de sedimentos são capazes de formar correntes do tipo hiperpicnal em ambientes com diferentes concentrações salinas. Tem também como objetivo o desenvolvimento de uma metodologia experimental que permita a realização de ensaios dentro de um determinado padrão de uniformidade, de modo a facilitar a comparação entre os resultados. O trabalho foi desenvolvido junto ao Núcleo de Estudos em Correntes de Densidades (NECOD), que, desde meados do ano 2000, desenvolve pesquisas através de simulações físicas de correntes de densidade. Ao todo, foram simuladas 28 correntes, com diferentes contrastes de densidades entre o fluxo e o fluido ambiente, em um canal experimental unidirecional de pequeno porte. Todas as simulações foram registradas com câmeras filmadoras digitais, cujas imagens permitiram caracterizar os tipos de correntes formadas e também os valores para parâmetros característicos de cada uma delas. Para 16 experimentos, além de análises visuais das correntes, foram também feitas avaliações dos depósitos gerados. Os dados mostram que, mesmo se injetando uma mistura de menor densidade que o fluido ambiente, é possível gerar correntes do tipo hiperpicnal. Para tentar compreender como uma mistura com densidade menor que o fluido ambiente conseguiu formar correntes do tipo hiperpicnal, foi empregada uma técnica para visualizar o escape de fluido intersticial das correntes. Através da utilização de um corante solúvel em água, foi registrada, por câmera de vídeo, a saída da água pigmentada do interior do corpo da corrente. Esta pode ser, efetivamente, a melhor explicação para justificar a formação das correntes hiperpicnais mesmo com contrastes de densidades não favoráveis para tanto. Outro resultado obtido nos experimentos é que, para uma mesma concentração de mistura de sedimentos, partículas de menor diâmetro conseguem manter por mais tempo a integridade do corpo da corrente, enquanto que partículas de maior diâmetro não conseguem manter a forma da corrente. A explicação encontrada para tal acontecimento é que, quando são utilizadas partículas de menor diâmetro, há em suspensão um maior número delas e, também, a distância entre as partículas é menor, aumentando, assim, a interação entre elas. As forças de interação entre as partículas são proporcionais à tensão de cisalhamento, o que auxilia na manutenção das partículas em suspensão. / The present work is aim to determine through physical modeling which sediment concentrations are needed to generate hyperpycnal flows in the case of a density current entering a saline ambient. The study also aims at developing an experimental methodology to allow procedures to be conducted within certain standards, in order to make easier the comparison of results acquired by different researchers. The study was conducted at the Núcleo de Estudos em Correntes de Densidades (NECOD), where studies with physical modeling of density currents are being carried out since mid-2000. A total of 28 density currents were simulated with different density contrasts between the flow and the ambient fluid, all of them carried out in a small unidirectional flume. All experiments were recorded with digital video cameras, in order to classify the flows and to establish characteristic parameters from them. In addition to the visual analysis of the density flows, the sediment deposits of 16 experiments were also evaluated. The data indicate that it was possible to generate hyperpycnal flows even with negative density difference, i.e. currents with lower density than the ambient. To investigate this unexpected result, a soluble dye was mixed with the current to visualize the escape of interstitial water from the current to the ambient. The escape of interstitial fluid from the density current is, effectively, the best explanation to the formation of hyperpycnal currents even in negative density contrasts. Another result obtained was that density currents composed by finer sediment keep their body shape stable, while currents with the same sediment concentration composed by coarser sediment not sustain their body profile. This is explained by the increasing of interaction between the particles, i.e. in the case of a current composed of finer grains it will increase the number of particles and decrease the distance between them. Also, the interacting forces are proportional to the shear stress, which helps to keep the particles in suspension.
|
8 |
Caracterização física de correntes de densidade em ambientes salinos sob diferentes contrastes de densidadeBoffo, Carolina Holz January 2010 (has links)
O presente trabalho tem como principal objetivo determinar, através de simulações físicas de correntes de densidade, quais concentrações de sedimentos são capazes de formar correntes do tipo hiperpicnal em ambientes com diferentes concentrações salinas. Tem também como objetivo o desenvolvimento de uma metodologia experimental que permita a realização de ensaios dentro de um determinado padrão de uniformidade, de modo a facilitar a comparação entre os resultados. O trabalho foi desenvolvido junto ao Núcleo de Estudos em Correntes de Densidades (NECOD), que, desde meados do ano 2000, desenvolve pesquisas através de simulações físicas de correntes de densidade. Ao todo, foram simuladas 28 correntes, com diferentes contrastes de densidades entre o fluxo e o fluido ambiente, em um canal experimental unidirecional de pequeno porte. Todas as simulações foram registradas com câmeras filmadoras digitais, cujas imagens permitiram caracterizar os tipos de correntes formadas e também os valores para parâmetros característicos de cada uma delas. Para 16 experimentos, além de análises visuais das correntes, foram também feitas avaliações dos depósitos gerados. Os dados mostram que, mesmo se injetando uma mistura de menor densidade que o fluido ambiente, é possível gerar correntes do tipo hiperpicnal. Para tentar compreender como uma mistura com densidade menor que o fluido ambiente conseguiu formar correntes do tipo hiperpicnal, foi empregada uma técnica para visualizar o escape de fluido intersticial das correntes. Através da utilização de um corante solúvel em água, foi registrada, por câmera de vídeo, a saída da água pigmentada do interior do corpo da corrente. Esta pode ser, efetivamente, a melhor explicação para justificar a formação das correntes hiperpicnais mesmo com contrastes de densidades não favoráveis para tanto. Outro resultado obtido nos experimentos é que, para uma mesma concentração de mistura de sedimentos, partículas de menor diâmetro conseguem manter por mais tempo a integridade do corpo da corrente, enquanto que partículas de maior diâmetro não conseguem manter a forma da corrente. A explicação encontrada para tal acontecimento é que, quando são utilizadas partículas de menor diâmetro, há em suspensão um maior número delas e, também, a distância entre as partículas é menor, aumentando, assim, a interação entre elas. As forças de interação entre as partículas são proporcionais à tensão de cisalhamento, o que auxilia na manutenção das partículas em suspensão. / The present work is aim to determine through physical modeling which sediment concentrations are needed to generate hyperpycnal flows in the case of a density current entering a saline ambient. The study also aims at developing an experimental methodology to allow procedures to be conducted within certain standards, in order to make easier the comparison of results acquired by different researchers. The study was conducted at the Núcleo de Estudos em Correntes de Densidades (NECOD), where studies with physical modeling of density currents are being carried out since mid-2000. A total of 28 density currents were simulated with different density contrasts between the flow and the ambient fluid, all of them carried out in a small unidirectional flume. All experiments were recorded with digital video cameras, in order to classify the flows and to establish characteristic parameters from them. In addition to the visual analysis of the density flows, the sediment deposits of 16 experiments were also evaluated. The data indicate that it was possible to generate hyperpycnal flows even with negative density difference, i.e. currents with lower density than the ambient. To investigate this unexpected result, a soluble dye was mixed with the current to visualize the escape of interstitial water from the current to the ambient. The escape of interstitial fluid from the density current is, effectively, the best explanation to the formation of hyperpycnal currents even in negative density contrasts. Another result obtained was that density currents composed by finer sediment keep their body shape stable, while currents with the same sediment concentration composed by coarser sediment not sustain their body profile. This is explained by the increasing of interaction between the particles, i.e. in the case of a current composed of finer grains it will increase the number of particles and decrease the distance between them. Also, the interacting forces are proportional to the shear stress, which helps to keep the particles in suspension.
|
9 |
Análise comparativa entre correntes de densidade e jatosFerreira, Pedro Luiz da Costa January 2013 (has links)
Buscando compreender melhor os fenômenos envolvidos na geração de correntes de turbidez hiperpicnais e hipopicnais, o presente trabalho abordou o tema apresentando uma análise comparativa com tipos de jatos e plumas. As análises realizadas foram quanto às características geométricas (espessura da corrente), dinâmicas (velocidade), concentração e fluxos (volumétrico, de quantidade de movimento e oriundo da diferença de massas específicas). Através de modelagem física, foram realizados experimentos, majoritariamente, em ambiente salino, contudo, também utilizou-se ambiente de água pura. Os ensaios foram realizados nas instalações do laboratório NECOD, utilizando um canal de aço e vidro, medindo 1540 cm de comprimento, 40 cm de largura (dividido em duas partes de 20 cm, sendo utilizada somente uma delas) e 100 cm de profundidade. O material utilizado para a geração das correntes foi composto por uma mistura de água e carvão mineral do tipo Cardiff 205, tendo a sua massa específica variando entre 1012 kg/m³ e 1033 kg/m³. Já o fluido ambiente foi composto por água e uma mistura de água e sal, tendo a sua massa específica entre 996 kg/m³ e 1024 kg/m³. Seis seções ao longo do canal foram monitoradas, a 12,5 cm, 50 cm, 110 cm, 315 cm, 520 cm e 720 cm do início do fluxo. Em cada uma, registros visuais possibilitaram a avaliação das espessuras das correntes, enquanto sondas ADV possibilitaram a obtenção das velocidades longitudinais. Em seis ensaios, houveram coletas do material em transporte pela corrente, possibilitando analisar as suas concentrações. Pôde-se também registrar a transição entre correntes hiperpicnais e hipopicnais, notando-se uma relação entre o ponto de desprendimento e a diferença entre as massas específicas do fluido ambiente e do fluido injetado no canal. Sobre a espessura das correntes hiperpicnais, observou-se que elas não apresentaram um crescimento constante, como em casos de jatos de parede, e os seus valores foram menores. O decaimento das velocidades das correntes foi analisado em relação às suas origens real e virtual. No primeiro caso, o decréscimo das correntes foi mais suave e não tão definido, quanto o caso de jatos de paredes. Para o segundo, a sua evolução não foi linear, como esperado, além de apresentarem números de Reynolds iniciais diferentes dos esperados. A relação de decaimento do fluxo de quantidade de movimento inicial apresentou uma relação semelhante a jatos, porém, em uma ordem de grandeza maior. Já o crescimento do fluxo oriundo da diferença de massas específicas não mostra-se tão linear, quanto jatos, e com valores superiores. Visto as diferenças entre esses dois fluxos, não se pôde classificar as correntes hiperpicnais e hipopicnais como jatos. Analisou-se a diluição adimensional, a qual não apresentou um comportamento homogêneo, como em jatos e plumas, porém, os seus valores se aproximaram mais de plumas, quanto à ordem de grandeza. Por fim, considera-se que jatos apresentam a quantidade de movimento constante, enquanto plumas apresentam o fluxo oriundo da diferença de massas específicas constante. Para o caso de correntes hiperpicnais e hipopicnais, nenhum dos dois comportamentos foi observado. Ambos apresentaram-se de forma não definida. Através das análises realizadas neste trabalho, notou-se que as correntes de densidade geradas em laboratório não podem ser relacionadas diretamente com jatos e plumas, sendo fenômenos distintos. Contudo, a quantidade de movimento inicial e a diluição adimensional apresentam comportamentos característicos para as correntes, merecendo maiores atenções em trabalhos futuros. Por último, pôde-se observar um comportamento padrão para o desprendimento das correntes, passando de hiperpicnal para hipopicnal. / Searching for a better understanding of the phenomenon involved in the generation of hyperpycnal and hypopycnal density current, the currently work shows an analysis comparing it with different kinds of jets and plumes. The analyses were about geometric (thickness), dynamic (velocity), concentration and flux (volumetric, momentum and buoyancy). Using physical modeling, it was made experiments using salt water (in the majority) and fresh water. The experiments were made in the facilities of NECOD lab, using a steel and glass flume measuring 1540 cm long, 40 cm wide (divided into two parts of 20 cm, which only one of this was used) and 110 cm deep. The material used to create the current was a mix between fresh water and mineral coal Cardiff 205, with its density between 1012 kg/m³ and 1033 kg/m³. The ambient fluid was composed of fresh water, for the majority of the experiments, and salt water, with the density between 996 kg/m³ and 1024 kg/m³. Six section along the channel were analyses: 12.5 cm, 50 cm, 110 cm, 315 cm, 520 cm and 720 cm from the flux source. Each one had a visual register, to measure the geometry, and an ADV probe, to measure its longitudinal velocity. In six experiments it was collected material to analyze the flow concentration. Analyzing the transition from hyperpycnal flow to hypopycnal flow, it could be noticed a linear relation between the detachment point and the difference of density in the ambient fluid and the initial injected flow. About the thickness of the hyperpycnal flows, it was observed a non constant growth, as it happens in wall jets case, as well as lower heights. The decrease of the current velocity was analyzed against the distance from the real and virtual source of it. In the first case, the decrease was smother and not well defined as in wall jets. For the second case, the evolution was non linear, as it was expected, and it present lower initial Reynolds numbers from what was expected. The decrease of the initial momentum flux shows a similar relation to jets, but in a higher greatness. In the other hand, the growth of the buoyancy flux was non linear and bigger than those in the jets. Thus, it was not possible to classify hyperpycnal and hypopycnal flows as jets. Analyzing the dimensionless dilution, it didn’t show a homogeneous behavior as in jets and plumes. But its values got closer to the plumes greatness. Bring to an end, jets are considered to have a constant momentum, while plumes have constant buoyancy. For hyperpycnal and hypopycnal flow none of those behaviors were observed. There both had an undefined behavior. Using the analysis of the currently work, it was noticed that the density currents produced in laboratory cannot be related to plumes and jets. Both are different phenomenon. However, the initial momentum and the dimensionless dilution show a characteristic behavior, needing to be more analyzes in futures works. Finally, it could be observed a standard behavior between the density differences and the detachment points.
|
10 |
Análise comparativa entre correntes de densidade e jatosFerreira, Pedro Luiz da Costa January 2013 (has links)
Buscando compreender melhor os fenômenos envolvidos na geração de correntes de turbidez hiperpicnais e hipopicnais, o presente trabalho abordou o tema apresentando uma análise comparativa com tipos de jatos e plumas. As análises realizadas foram quanto às características geométricas (espessura da corrente), dinâmicas (velocidade), concentração e fluxos (volumétrico, de quantidade de movimento e oriundo da diferença de massas específicas). Através de modelagem física, foram realizados experimentos, majoritariamente, em ambiente salino, contudo, também utilizou-se ambiente de água pura. Os ensaios foram realizados nas instalações do laboratório NECOD, utilizando um canal de aço e vidro, medindo 1540 cm de comprimento, 40 cm de largura (dividido em duas partes de 20 cm, sendo utilizada somente uma delas) e 100 cm de profundidade. O material utilizado para a geração das correntes foi composto por uma mistura de água e carvão mineral do tipo Cardiff 205, tendo a sua massa específica variando entre 1012 kg/m³ e 1033 kg/m³. Já o fluido ambiente foi composto por água e uma mistura de água e sal, tendo a sua massa específica entre 996 kg/m³ e 1024 kg/m³. Seis seções ao longo do canal foram monitoradas, a 12,5 cm, 50 cm, 110 cm, 315 cm, 520 cm e 720 cm do início do fluxo. Em cada uma, registros visuais possibilitaram a avaliação das espessuras das correntes, enquanto sondas ADV possibilitaram a obtenção das velocidades longitudinais. Em seis ensaios, houveram coletas do material em transporte pela corrente, possibilitando analisar as suas concentrações. Pôde-se também registrar a transição entre correntes hiperpicnais e hipopicnais, notando-se uma relação entre o ponto de desprendimento e a diferença entre as massas específicas do fluido ambiente e do fluido injetado no canal. Sobre a espessura das correntes hiperpicnais, observou-se que elas não apresentaram um crescimento constante, como em casos de jatos de parede, e os seus valores foram menores. O decaimento das velocidades das correntes foi analisado em relação às suas origens real e virtual. No primeiro caso, o decréscimo das correntes foi mais suave e não tão definido, quanto o caso de jatos de paredes. Para o segundo, a sua evolução não foi linear, como esperado, além de apresentarem números de Reynolds iniciais diferentes dos esperados. A relação de decaimento do fluxo de quantidade de movimento inicial apresentou uma relação semelhante a jatos, porém, em uma ordem de grandeza maior. Já o crescimento do fluxo oriundo da diferença de massas específicas não mostra-se tão linear, quanto jatos, e com valores superiores. Visto as diferenças entre esses dois fluxos, não se pôde classificar as correntes hiperpicnais e hipopicnais como jatos. Analisou-se a diluição adimensional, a qual não apresentou um comportamento homogêneo, como em jatos e plumas, porém, os seus valores se aproximaram mais de plumas, quanto à ordem de grandeza. Por fim, considera-se que jatos apresentam a quantidade de movimento constante, enquanto plumas apresentam o fluxo oriundo da diferença de massas específicas constante. Para o caso de correntes hiperpicnais e hipopicnais, nenhum dos dois comportamentos foi observado. Ambos apresentaram-se de forma não definida. Através das análises realizadas neste trabalho, notou-se que as correntes de densidade geradas em laboratório não podem ser relacionadas diretamente com jatos e plumas, sendo fenômenos distintos. Contudo, a quantidade de movimento inicial e a diluição adimensional apresentam comportamentos característicos para as correntes, merecendo maiores atenções em trabalhos futuros. Por último, pôde-se observar um comportamento padrão para o desprendimento das correntes, passando de hiperpicnal para hipopicnal. / Searching for a better understanding of the phenomenon involved in the generation of hyperpycnal and hypopycnal density current, the currently work shows an analysis comparing it with different kinds of jets and plumes. The analyses were about geometric (thickness), dynamic (velocity), concentration and flux (volumetric, momentum and buoyancy). Using physical modeling, it was made experiments using salt water (in the majority) and fresh water. The experiments were made in the facilities of NECOD lab, using a steel and glass flume measuring 1540 cm long, 40 cm wide (divided into two parts of 20 cm, which only one of this was used) and 110 cm deep. The material used to create the current was a mix between fresh water and mineral coal Cardiff 205, with its density between 1012 kg/m³ and 1033 kg/m³. The ambient fluid was composed of fresh water, for the majority of the experiments, and salt water, with the density between 996 kg/m³ and 1024 kg/m³. Six section along the channel were analyses: 12.5 cm, 50 cm, 110 cm, 315 cm, 520 cm and 720 cm from the flux source. Each one had a visual register, to measure the geometry, and an ADV probe, to measure its longitudinal velocity. In six experiments it was collected material to analyze the flow concentration. Analyzing the transition from hyperpycnal flow to hypopycnal flow, it could be noticed a linear relation between the detachment point and the difference of density in the ambient fluid and the initial injected flow. About the thickness of the hyperpycnal flows, it was observed a non constant growth, as it happens in wall jets case, as well as lower heights. The decrease of the current velocity was analyzed against the distance from the real and virtual source of it. In the first case, the decrease was smother and not well defined as in wall jets. For the second case, the evolution was non linear, as it was expected, and it present lower initial Reynolds numbers from what was expected. The decrease of the initial momentum flux shows a similar relation to jets, but in a higher greatness. In the other hand, the growth of the buoyancy flux was non linear and bigger than those in the jets. Thus, it was not possible to classify hyperpycnal and hypopycnal flows as jets. Analyzing the dimensionless dilution, it didn’t show a homogeneous behavior as in jets and plumes. But its values got closer to the plumes greatness. Bring to an end, jets are considered to have a constant momentum, while plumes have constant buoyancy. For hyperpycnal and hypopycnal flow none of those behaviors were observed. There both had an undefined behavior. Using the analysis of the currently work, it was noticed that the density currents produced in laboratory cannot be related to plumes and jets. Both are different phenomenon. However, the initial momentum and the dimensionless dilution show a characteristic behavior, needing to be more analyzes in futures works. Finally, it could be observed a standard behavior between the density differences and the detachment points.
|
Page generated in 0.1818 seconds