• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 1
  • Tagged with
  • 25
  • 25
  • 25
  • 10
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Hydrophobicity of Magnetite Coating on Low Carbon Steel

Akhtar, Mst Alpona 08 1900 (has links)
Superhydrophobic coatings (SHC) with excellent self-cleaning and corrosion resistance property is developed on magnetite coated AISI SAE 1020 steel by using a simple immersion method. Roughness measurement, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), contact angle measurement (CAM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS), and qualitative characterization of self-cleaning behavior, antifouling property and durability of the coatings are assessed. A water contact angle as high as 152o on the coated surface with excellent self-cleaning and resistivity to corrosion and good longevity in atmospheric air is obtained. Self-cleaning test results prove that these surfaces can find applications in large scale production of engineering materials. Potentiodynamic polarization tests and EIS tests confirm that the superhydrophobic low carbon steel surfaces have better resistance to corrosion compared to bare steel and magnetite coated steel in 3.5% NaCl solution. But the longevity of the coated steel surfaces in 3.5% salt solution is limited, which is revealed by the immersion durability test. However, hydrophobic coatings (HC) have better stability in normal tap water, and it can stay unharmed up to 15 days. Finally, hydrophobic coatings on low carbon steel surface retains hydrophobic in open atmosphere for more than two months. Results of this investigation show surface roughness is a critical factor in manufacturing hydrophobic steel surfaces. Higher contact angles are obtained for rougher and more uniform surfaces. A linear mathematical relationship (y =6x+104; R2 = 0.93) is obtained between contact angle (y) and surface roughness (x).
22

Corrosion behaviour of aluminised steel and conventional alloys in simulated aluminium smelting cell environments

Xu, Nan, Materials Science & Engineering, Faculty of Science, UNSW January 2002 (has links)
Aluminium smelting is a high temperature electrometallurgical process, which suffers considerable inefficiencies in power utilization and equipment maintenance. Aluminium smelting cell works in the extreme environments that contain extraordinarily aggressive gases, such as HF, CO and SO2. Mild steel used as a structural material in the aluminium industry, can be catastrophically corroded or oxidized in these conditions. This project was mainly concerned with extending the lifetime of metal structures installed immediately above the aluminium smelting cells. An aluminium-rich coating was developed on low carbon steel A06 using pack cementation technique. Yttria (Y2O3) was also used to improve the corrosion resistance of coating. Kinetics of the coating formation were studied. XRD, FESEM and FIB were employed to investigate the phase constitution and the surface morphology. Together with other potentially competitive materials, aluminium-rich coating was evaluated in simulated plant environments. Results from the long time (up to 2500h) isothermal oxidation of materials at high temperature (800??C) in air showed that the oxidation resistance of coated A06 is close to that of stainless steel 304 and even better than SS304 in cyclic oxidation tests. Coated A06 was also found to have the best sulfidation resistance among the materials tested in the gas mixture contains SO2 at 800??C. Related kinetics and mechanisms were also studied. The superior corrosion resistance of the coated A06 is attributed to the slow growing alpha-Al2O3 formed. Low temperature corrosion tests were undertaken in the gas mixtures containing air, H2O, HCl and SO2 at 400??C. Together with SS304 and 253MA, coated A06 showed excellent corrosion resistance in all the conditions. The ranking of the top three materials for corrosion resistance is: 253MA, coated A06 and SS304. It is believed that aluminised A06 is an ideal and economical replacement material in the severe corrosive aluminium smelting cell environment.
23

A Study of magnetic thin film corrosion mechanisms with the development of a novel on-line coupling technique and with Microstructural and Magnetic Cross-Sectional Profiling Techniques

Xu, Danhua 06 1900 (has links) (PDF)
Ph.D. / Electrical Engineering / A novel combinatory on-line technique coupling Electrochemistry (EC) with Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) for in-situ quantitative determination of the corrosion mechanism in magnetic thin film structures has been developed in this research. Detailed construction of a system and a comprehensive methodology was described in this dissertation. Uniformly coated multi-layer magnetic thin film samples with multi-elemental alloys containing CoCrPtB and CrMo/Cr on the Ni/P substrate were used in this research for demonstrations. In-situ quantifications conducted in a series of experiments revealed that elemental dissolution was a predominant mechanism during corrosion courses of metallic thin film materials. At the microscopic scale, using results from depletion rate determination as well as cross-sectional analyses of microstructures and magnetic features, elemental passivity was observed to occur, depending on corrosion conditions. Without external influences, surface topographic measurements indicated that passive film could be produced at the macro-scale. The dependence of the dissolution rate of each metallic ion of alloys on electrolyte concentration, potential bias, scanning rate, and corrosion duration suggested that the most critical influential factor in corrosion mechanisms was epitaxial microstructures with strongly-oriented arrangements of grains and grain boundaries. Through the use of cross-sectional microstructural analysis, including high resolution TEM micrography, electron FFT diffraction, and nano-probe with EDS profiling, variations of elemental spatial distributions at grains and grain boundaries due to the corrosion phenomena were discovered, which provided a comprehensive understanding of occurrences of micro-corrosion in thin film structures. Because of the unique magnetic property of magnetic thin films, extensive studies of field strengths from the surface were also performed in this research. Important magnetization variations were noticed when cross-sectional images were obtained. Finally, models of corrosion kinetics in the multiple layers of magnetic thin film structures were proposed.
24

Corrosion behaviour of aluminised steel and conventional alloys in simulated aluminium smelting cell environments

Xu, Nan, Materials Science & Engineering, Faculty of Science, UNSW January 2002 (has links)
Aluminium smelting is a high temperature electrometallurgical process, which suffers considerable inefficiencies in power utilization and equipment maintenance. Aluminium smelting cell works in the extreme environments that contain extraordinarily aggressive gases, such as HF, CO and SO2. Mild steel used as a structural material in the aluminium industry, can be catastrophically corroded or oxidized in these conditions. This project was mainly concerned with extending the lifetime of metal structures installed immediately above the aluminium smelting cells. An aluminium-rich coating was developed on low carbon steel A06 using pack cementation technique. Yttria (Y2O3) was also used to improve the corrosion resistance of coating. Kinetics of the coating formation were studied. XRD, FESEM and FIB were employed to investigate the phase constitution and the surface morphology. Together with other potentially competitive materials, aluminium-rich coating was evaluated in simulated plant environments. Results from the long time (up to 2500h) isothermal oxidation of materials at high temperature (800??C) in air showed that the oxidation resistance of coated A06 is close to that of stainless steel 304 and even better than SS304 in cyclic oxidation tests. Coated A06 was also found to have the best sulfidation resistance among the materials tested in the gas mixture contains SO2 at 800??C. Related kinetics and mechanisms were also studied. The superior corrosion resistance of the coated A06 is attributed to the slow growing alpha-Al2O3 formed. Low temperature corrosion tests were undertaken in the gas mixtures containing air, H2O, HCl and SO2 at 400??C. Together with SS304 and 253MA, coated A06 showed excellent corrosion resistance in all the conditions. The ranking of the top three materials for corrosion resistance is: 253MA, coated A06 and SS304. It is believed that aluminised A06 is an ideal and economical replacement material in the severe corrosive aluminium smelting cell environment.
25

Rational Design of Materials for the Protection of Outdoor Metalworks

Swartz, Natasja Alexandria 11 August 2015 (has links)
Protective coatings are commonly used to protect culturally significant works, such as outdoor sculptures and architectural elements. Given the valuable nature of such metalworks, there is a surprising lack of environmentally sustainable coatings available for their conservation. High performance clear coatings are not developed or thoroughly tested for compatibility and longevity on outdoor sculptures. This can make the implementation of both methods and materials, no matter how promising in a lab, a significant hurdle for the conservation science community. This dissertation work initially aims to replace high-VOC formulations such as acrylic lacquers and waxes currently used as protective coatings for bronze with a waterborne coating by investigating the film formation differences between coating types. Such differences likely have implications for initial film barrier properties as well as long-term performance. For coating any large-scale metal object, cost-effectiveness limits applicable coatings to commercially available resins with some minor adjustments. Additional requirements for protective coatings for artwork require they must also be transparent, reversible, easily applied and environmentally sustainable. The chemical and physical properties of polymeric coatings with nanoclays modifiers were investigated as they may offer superior weatherability and act as better barriers to water absorption than commonly used lacquers and waxes. This work ultimately finds that nanocomposites with poly(vinylidene fluoride) latex and chemically stabilized nanoclays significantly improved performance and may be a viable option in the protection of material cultural heritage. Protection of high value objects where aesthetics is also important, such as airplanes, buildings, and sculptures are among the possible applications for this research.

Page generated in 0.1642 seconds