• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation into load bridging effect for block class pallets as a function of package size and pallet stiffness

Morrissette, Steven Michael 08 July 2019 (has links)
Pallets and corrugated boxes are ubiquitous in the global supply chain. However, the interactions that exist between the boxes and pallet are ignored during the pallet design process resulting in an over design of pallet performance and the waste of raw materials. The goal of this research is to understand how pallet performance is affected by headspace, box size, and base design across multiple support conditions using block class wooden pallets. Headspace and base design had no effect on pallet deflection for the experimental weights used throughout testing. The effect of box size was significant on pallet deflection across multiple support conditions. The effect was greatest for lower stiffness pallets and low stiffness support conditions (RAW) with up to a 50% reduction in pallet deflection observed by switching from small to large boxes on a very low stiffness pallet. Evaluation of pressure mat data showed an increase in the redistribution of pressure away from the center of the pallet and towards the supports as box size increased. The redistribution of pressure towards the supports is known as load bridging and validates the observed reduction in pallet deflection as a function of box size. The results indicate that incorporating the effect of packages into current pallet design practices could result more effective and cheaper pallet designs. / Master of Science / Transportation and storage of material goods at a national and international level is an integral part of our economy with pallets and corrugated boxes making up the majority of packaging materials. Currently, the interactions that exist between the boxes and pallet are ignored during pallet design resulting in an over design of pallet performance and a waste of raw materials. Understanding the interactions that exist in a unit load is important in optimizing pallet performance, reducing the amount of raw materials used, and ultimately reducing cost. This research project is specifically focused on the interactions between corrugated boxes and block class wooden pallets. The effect of headspace (the gap between the products and the top of the box) and box size was investigated as a function of pallet stiffness, support condition, and bottom deck design. Both pallet deflection and the pressure distribution on the top surface of the pallet were examined to evaluate pallet performance. It was found that headspace does not have an effect on pallet deflection unless the weight of the unit load exceeds 3,500 lbs. for small boxes and 1,750 lbs. for large boxes. Base design showed no significant effect on pallet deflection for all of the support conditions evaluated. The effect of box size had a major effect on the deflection of the pallet. Large boxes showed the greatest change especially when lower stiffness pallets were used. Increasing the box size can reduce the deflection of the pallet as much as 50% which means that pallets supporting larger boxes could support much more weight than currently estimated. Evaluation of pressure mat data showed that when the size of the boxes increased, more pressure is distributed towards the supports. More pressure is applied to the pallet section on the top of the supports; therefore, less pressure is available to cause pallet bending. This finding validates the observed reduction in pallet deflection as a function of box size. The obtained results help pallet designers to incorporate the interactions between the packages and the pallet into their design process which will allow them to reduce the amount material used for pallet.
2

Investigation of the Effect of Corrugated Boxes on the Distribution of Compression Stresses on the Top Surface of Wooden Pallets

Clayton, Anthony Page II 10 January 2019 (has links)
Pallets are the foundation of unit loads and supply chains. They provide a way to store and transport products in an efficient manner. The load capacity of pallets greatly depends on the type of packages carried by the pallet; however, current pallet design methods do not consider the effect of packages on the load carrying capacity of the pallet. This results in excessive use of materials which reduces the sustainability of unit loads, drives costs up, and creates issues for people in the supply chain. The objective of this study was to investigate the effect of a corrugated box's size and head space on pallet deflection and stress distribution on the top of the pallet as a function of pallet stiffness across multiple pallet support conditions. Data analysis identified that box size had a significant effect on the deflection of the pallet. This effect was only significant for warehouse racking across the width and length support conditions. As much as a 53% reduction in pallet deflection was observed for high stiffness pallets supporting corrugated boxes with 25.4 mm headspace when the size was increased from small to large. Meanwhile, no significant effect of box size was found for other supports. The effect of headspace was significant in some scenarios but inconsistent thus more investigation with a larger sample size is recommended. In addition, redistribution of vertical compression stresses towards the supports was observed as a function of the increasing box size. The increased concentration of compression stresses on top of the supports and the resulting lower pallet deflection could significantly increase the actual load carrying capacity of some pallet designs. / Master of Science / Pallets are the foundation of unit loads and supply chains. They provide a way to store and transport products in an efficient manner. The load capacity of pallets greatly depends on the type of packages carried by the pallet; however, current pallet design methods do not consider the effect of packages on the load carrying capacity of the pallet. This results in excessive use of materials which reduces the sustainability of unit loads, drives costs up, and creates issues for people in the supply chain. The objective of this study was to investigate the effect of a corrugated box’s size and head space on pallet deflection and stress distribution on the top of the pallet as a function of pallet stiffness across multiple pallet support conditions. The data from the study identified that box size does have an effect on the deflection of the pallet but, it was only found to be significant for the warehouse racking supports. The highest reduction in pallet deflection was 53% on the high stiffness pallets carrying corrugated boxes with 25.4 mm of headspace as the boxes increased in size. The other support conditions showed no significant effect of the box size. Headspace showed some significant effect in some conditions but was found inconsistent, therefore an investigation with a larger sample size is recommended. In addition, the redistribution of vertical compression stresses towards the supports was observed as a function of increasing box size. This increase in stress on the supports resulted in lower pallet deflection that could significantly increase the actual load carrying capacity of some pallet designs.
3

The effect of paper structure on the deviation between tensile and compressive responses

Vorakunpinij, Adisak 05 1900 (has links)
No description available.

Page generated in 0.0338 seconds