• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mild traumatic brain injury and post traumatic epilepsy: biological relevance and strategies for treatment

MacMullin, Paul Castle 23 November 2021 (has links)
INTRO: There is mounting evidence to suggest a causal link between mild traumatic brain injury (mTBI) and post traumatic epilepsy (PTE). Significant ranges in the methods and definitions of “mild” TBI, each with their own limitations, make drawing cohesive conclusions from the state of the literature difficult. However, this body of work attempts to compile the literature in order to better elucidate the relationship between these populations. Ultimately, I hope this source to be a useful reference for understanding the state of the research such that one can make critical considerations in the future design of methods to definitively improve the quality of work in this field. Meaningful improvements could radically improve the outcomes for the millions of people who suffer as a result of these injuries and their lasting implications. METHODS: PubMed searches used keywords: Traumatic Brain injury (mild), Epilepsy, Concussion, Loss of cortical inhibition, Post Traumatic Epilepsy. Combinations of terms including mTBI or PTE AND MRI, fMRI, DTI, MRS, Biomarkers, TMS, EEG, and pathology. RESULTS: Strong trends persist despite the limitation in consistency of terminology and methods. Relative risk scores between 1.5 and 2.2 percent have been established across multiple long-term studies across decades of research and millions of person years, a 2-3-fold change over the baseline incidence of epilepsy in the general population (0.7%; less than one in every 100). Preclinical studies in mice have recently shown progressive increased seizure susceptibility after repeated mTBI. Within the first three weeks after injury, Glutamate homeostasis is altered meaningfully. Increased neural excitability results as the balance between excitation and inhibition shifts in the brain. An increased Glu/GABA ratio has also been linked to dysfunction in GABAergic cell populations, including parvalbumin positive inhibitory interneurons (PVI). Oxidative stress, as measured by a decreased GSH/GSSG ratio, suggests a dysregulation in homeostatic processes than can outlive clinical symptoms. Animals also display a decreased latency to induced seizure by Pentelynetetrazole (PTZ) a potent GABA receptor antagonist. Six weeks after injury, these mice have been shown to display; decreased GABA driving an increased Glu/GABA ratio, decreased EEG gamma power, and prominent signs of gliosis involving both astrocytes and microglia. Clinical investigations into the biology of this injury, utilizing a wide range of techniques, point to a loss of cortical inhibitory tone, an early hallmark of PTE. TMS findings of both reduced resting motor threshold and a shorter cortical silent period suggest a loss of cortical inhibitory tone likely shifting the excitation/inhibition balance. Signs of microstructural damage and altered cell permeability point to a disruption in chemical gradients which leads to greater functional deficits, as the parameters for normal cell function are no longer maintained. Changes in function and metabolism have been shown to outlast many of the behavioral and acute clinical symptoms suggesting a slow development but long duration of this insidious process. CONCLUSION: Mechanisms that link mTBI to PTE include a loss of cortical inhibition, increased oxidative stress and gliosis which over time increases Glu/GABA ratio, in turn increasing the likelihood of developing epilepsy. Although the relationship between mTBI and PTE has been suggested before through epidemiological studies, there is now emerging biochemical evidence to better describe this connection. Due to the high incidence of mTBI, any small increase in risk to develop PTE pursuant to concussion will affect millions of lives. With this new evidence, treatments can be designed to halt the progression and alleviate symptoms for those afflicted. The investigation of the biological mechanisms that link concussion and epilepsy is a critical step in developing treatment strategies and prophylaxis that could prove to be crucial for so many.
2

Vector-Based Integration of Local and Long-Range Information in Visual Cortex

Somers, David C., Todorov, Emanuel V., Siapas, Athanassios G., Sur, Mriganka 18 January 1996 (has links)
Integration of inputs by cortical neurons provides the basis for the complex information processing performed in the cerebral cortex. Here, we propose a new analytic framework for understanding integration within cortical neuronal receptive fields. Based on the synaptic organization of cortex, we argue that neuronal integration is a systems--level process better studied in terms of local cortical circuitry than at the level of single neurons, and we present a method for constructing self-contained modules which capture (nonlinear) local circuit interactions. In this framework, receptive field elements naturally have dual (rather than the traditional unitary influence since they drive both excitatory and inhibitory cortical neurons. This vector-based analysis, in contrast to scalarsapproaches, greatly simplifies integration by permitting linear summation of inputs from both "classical" and "extraclassical" receptive field regions. We illustrate this by explaining two complex visual cortical phenomena, which are incompatible with scalar notions of neuronal integration.
3

Speech-in-Noise Processing in Adults with Autism Spectrum Disorder

Anderson, Chelsea D 08 1900 (has links)
Individuals diagnosed with autism spectrum disorder often experience difficulty during speech-in-noise (SIN) processing tasks. However, it remains unclear how behavioral and cortical mechanisms of auditory processing explain variability in SIN performance in adults with ASD and their neurotypical counterparts. The proposed research explored variability in SIN as it relates to behavioral, perceptual, and objective measures of auditory processing. Results showed significant differences between groups in SIN thresholds. In addition, neurotypicals outperformed the ASD group on measures of sustained auditory attention characterized by reduced impulsivity, increased inhibition, and increased selective auditory attention. Individuals with ASD showed decreased acceptance of noise as compared to neurotypical peers. Overall, results highlighted auditory processing deficits in individuals with ASD that contribute to SIN performance.
4

Amyotrophic lateral sclerosis (ALS) associated with superoxide dismutase 1 (SOD1) mutations in British Columbia, Canada : clinical, neurophysiological and neuropathological features

Stewart, Heather G. January 2005 (has links)
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by loss of motor neurons and their supporting cells in the brain, brainstem and spinal cord, resulting in muscle paresis and paralysis including the bulbar (speech, chewing, swallowing) and respiratory muscles. The average age at onset is 55 years, and death due to respiratory failure occurs 2-5 years after symptom onset in ~ 85% of cases. Five to 10% of ALS is familial, and about 20% of familial cases are associated with mutations in the superoxide dismutase 1 (SOD1) gene. To date, 118 SOD1 mutations have been reported worldwide (www alsod.org). All are dominantly inherited, except for the D90A mutation, which is typically recessively inherited. D90A homozygous ALS is associated with long (~14 years) survival, and some atypical symptoms and signs. The reason for this is not known. In contrast, most other SOD1 mutations are associated with average survival, while some are associated with aggressive disease having lower motor neuron predominance and survival less than 12 months. The A4V mutation, which is the most frequently occurring SOD1 mutation in the United States, is an example of the latter. Understanding the pathogenic mechanisms of SOD1 mutants causing widely different disease forms like D90A and A4V is of paramount importance. Overwhelming scientific evidence indicates that mutations in the SOD1 gene are cytotoxic by a “gain of noxious” function, which although not fully understood results in protein aggregation and loss of cell function. This thesis explores different ALS-SOD1 gene mutations in British Columbia (BC), Canada. Two hundred and fifty-three ALS patients were screened for SOD1 mutations, and 12 (4.7%) unrelated patients were found to carry one of 5 different SOD1 mutations: A4V (n=2); G72C (n=1); D76Y (n=1); D90A (n=2); and 113T (n=6). Incomplete penetrance was observed in 3/12 families. Bulbar onset disease was not observed in the SOD1 mutation carriers in this study, but gender distribution was similar to previously reported studies. Age at symptom onset for all patients enrolled, with or without SOD1 mutations, was older than reported in previous studies. On average, patients with SOD1 mutations experience a longer diagnostic delay (22.6 months) compared to patients without mutations (12 months). Two SOD1 patients were originally misdiagnosed including the G72C patient who’s presenting features resembled a proximal myopathy. Neuropathological examination of this patient failed to reveal upper motor neuron disease. The I113T mutation was associated with variable age of onset and survival time, and was found in 2 apparently sporadic cases. The D76Y mutation was also found in an apparently sporadic case. I113T and D76Y are likely influenced by other genetic or environmental factors in some individuals. Two patients were homozygous for the D90A mutation, with clinical features comparable to patients originally described in Scandinavia. Clinical and electrophysiological motor neuron abnormalities were observed in heterozygous relatives of one D90A homozygous patient. The A4V patients were similar to those described in previous studies, although one had significant upper motor neuron disease both clinically and neuropathologically. Clinical neurophysiology is essential in the diagnosis of ALS, and helpful in monitoring disease progression. A number of transcranial magnetic stimulation (TMS) studies may detect early dysfunction of upper motor neurons when imaging techniques lack sensitivity. Peristimulus time histograms (PSTHs), which assess corticospinal function via recording of voluntarily activated single motor units during low intensity TMS of the motor cortex, were used to study 19 ALS patients having 5 different SOD1 mutations (including 8 of the 12 patients identified with SOD1 mutations from BC). Results were compared with idiopathic ALS cases, patients with multiple sclerosis (MS), and healthy controls. Significant differences were found in corticospinal pathophysiology between ALS patients with SOD1 mutations, idiopathic ALS, and MS patients. In addition, different SOD1 mutants were associated with significantly different neurophysiologic abnormalities. D90A homozygous patients show preserved if not exaggerated cortical inhibition and slow central conduction, which may reflect the more benign disease course associated with this mutant. In contrast, A4V patients show cortical hyper-excitability and only slightly delayed central conduction. I113T patients display a spectrum of abnormalities. This suggests mutant specific SOD1 pathology(s) of the corticospinal pathways in ALS.

Page generated in 0.1077 seconds