• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of cosmic ray anisotropies in the heliosphere / Godfrey Sibusiso Nkosi

Nkosi, Godfrey Sibusiso January 2006 (has links)
Thesis (M.Sc. (Physics))--North-West University, Potchefstroom Campus, 2007.
2

Aspects of the modulation of cosmic rays in the outer heliosphere / by Mabedle Donald Ngobeni

Ngobeni, Mabedle Donald January 2006 (has links)
A time-dependent two-dimensional (2D) modulation model including drifts, the solar wind tennination shock (TS) with diffusive shock acceleration and a heliosheath based on the Parker (1965) transport equation is used to study the modulation of galactic cosmic rays (GCRs) and the anomalous component of cosmic rays (ACRs) in the heliosphere. In particular, the latitude dependence of the TS compression ratio and injection efficiency of the ACRs (source strength) based on the hydrodynamic modeling results of Scherer et al. (2006) is used for the first time in a modulation model. The subsequent effects on differential intensities for both GCRs and ACRs are illustrated, comparing them to the values without a latitude dependence for these parameters. It is found that the latitude dependence of these parameters is important and that it enables an improved description of the modulation of ACRs beyond the TS. With this modeling approach (without fitting observations) to the latitude dependence of the two parameters, it is possible to obtain a TS spectrum for ACRs at a polar angle of B = 55" that qualitatively approximates the main features of the Voyager 1 observations. This positive result has to be investigated further. Additionally, it is shown that the enhancement of the cosmic ray intensity just below the cut-off energy found for the ACR at the TS in an A < 0 magnetic polarity cycle in the equatorial plane with the latitude independent scenario, disappears in this region when the latitude dependence of the compression ratio and injection efficiency is assumed. Subsequent effects of these scenarios are illustrated on the global anisotropy vector of both GCRs and ACRs as the main theme of this work. For this purpose the radial and latitudinal gradients for GCRs and ACRs were accurately computed. The radial and latitudinal anisotropy components were then computed as a function of energy, radial distance and polar angle. It is also the first time that the anisotropy vector is comprehensively calculated in such a global approach to cosmic ray modeling in the heliosphere, in particular for ACRs. It is shown that the anisotropy vector inside (up-stream) and outside (down-stream) the TS behaves in a complicated way, so care must be taken in interpreting it. It is found that the latitude dependence of the two mentioned parameters can alter the direction (sign) of the anisotropy vector. Its behaviour beyond the TS is markedly different from inside the TS, mainly because of the slower solar wind velocity, with less dependence on the magnetic polarity cycles. / Thesis (M.Sc. (Physics))--North-West University, Potchefstroom Campus, 2007.
3

Aspects of the modulation of cosmic rays in the outer heliosphere / by Mabedle Donald Ngobeni

Ngobeni, Mabedle Donald January 2006 (has links)
A time-dependent two-dimensional (2D) modulation model including drifts, the solar wind tennination shock (TS) with diffusive shock acceleration and a heliosheath based on the Parker (1965) transport equation is used to study the modulation of galactic cosmic rays (GCRs) and the anomalous component of cosmic rays (ACRs) in the heliosphere. In particular, the latitude dependence of the TS compression ratio and injection efficiency of the ACRs (source strength) based on the hydrodynamic modeling results of Scherer et al. (2006) is used for the first time in a modulation model. The subsequent effects on differential intensities for both GCRs and ACRs are illustrated, comparing them to the values without a latitude dependence for these parameters. It is found that the latitude dependence of these parameters is important and that it enables an improved description of the modulation of ACRs beyond the TS. With this modeling approach (without fitting observations) to the latitude dependence of the two parameters, it is possible to obtain a TS spectrum for ACRs at a polar angle of B = 55" that qualitatively approximates the main features of the Voyager 1 observations. This positive result has to be investigated further. Additionally, it is shown that the enhancement of the cosmic ray intensity just below the cut-off energy found for the ACR at the TS in an A < 0 magnetic polarity cycle in the equatorial plane with the latitude independent scenario, disappears in this region when the latitude dependence of the compression ratio and injection efficiency is assumed. Subsequent effects of these scenarios are illustrated on the global anisotropy vector of both GCRs and ACRs as the main theme of this work. For this purpose the radial and latitudinal gradients for GCRs and ACRs were accurately computed. The radial and latitudinal anisotropy components were then computed as a function of energy, radial distance and polar angle. It is also the first time that the anisotropy vector is comprehensively calculated in such a global approach to cosmic ray modeling in the heliosphere, in particular for ACRs. It is shown that the anisotropy vector inside (up-stream) and outside (down-stream) the TS behaves in a complicated way, so care must be taken in interpreting it. It is found that the latitude dependence of the two mentioned parameters can alter the direction (sign) of the anisotropy vector. Its behaviour beyond the TS is markedly different from inside the TS, mainly because of the slower solar wind velocity, with less dependence on the magnetic polarity cycles. / Thesis (M.Sc. (Physics))--North-West University, Potchefstroom Campus, 2007.
4

A study of cosmic ray anisotropies in the heliosphere / Godfrey Sibusiso Nkosi

Nkosi, Godfrey Sibusiso January 2006 (has links)
The three-dimensional (3D) steady-state electron modulation model of Ferreira (2002), based on Parker (1965) transport equation, is used to study the modulation of the 7 MeV galactic and Jovian electron anisotropies in the inner heliosphere. The Jovian electrons are produced in Jupiter's magnetosphere which is situated at ~ 5 AU in the ecliptic plane. The propagation of these particles is mainly described by the diffusion tensor applicable for the inner heliosphere. Some of the elements of the diffusion tensor are revisited in order to establish what contribution they make to the three-dimensional anisotropy vector and its components in the inner heliosphere. The 'drift' term is neglected since the focus of this study is on low-energy electrons. The effects on the electron anisotropy of different scenarios when changing the solar wind speed from minimum to maximum activity is illustrated. The effects on both the galactic and Jovian electron anisotropy of changing the polar perpendicular coefficient, in particular, are illustrated. It is shown that the computed Jovian electron anisotropy dominates the galactic anisotropy close to the Jovian electron source at ~5 AU, as expected, testifying to the validity of the3D-model. For the latitudinal anisotropy, the polar perpendicular diffusion plays a dominant role for Jovian electrons close to the source, with the polar gradient becoming the dominant factor away from the electron source. Of all three anisotropy components, the azimuthal anisotropy is dominant in the equatorial plane close to the source. It is found that there is a large azimuthal gradient close to the source because the low-energy electrons tend to follow the heliospheric magnetic field more closely than higher energy particles. The transition of the solar wind speed from minimum to intermediate to maximum solar activity condition was used to illustrate the modulation of the magnitude of the 7 MeV total anisotropy vector along the Ulysses trajectory. It was found that during the two encounters with the planet a maximum anisotropy of 38% was computed but with different anisotropy-timepeaks as the approach to Jupiter was different. / Thesis (M.Sc. (Physics))--North-West University, Potchefstroom Campus, 2007.
5

A study of cosmic ray anisotropies in the heliosphere / Godfrey Sibusiso Nkosi

Nkosi, Godfrey Sibusiso January 2006 (has links)
The three-dimensional (3D) steady-state electron modulation model of Ferreira (2002), based on Parker (1965) transport equation, is used to study the modulation of the 7 MeV galactic and Jovian electron anisotropies in the inner heliosphere. The Jovian electrons are produced in Jupiter's magnetosphere which is situated at ~ 5 AU in the ecliptic plane. The propagation of these particles is mainly described by the diffusion tensor applicable for the inner heliosphere. Some of the elements of the diffusion tensor are revisited in order to establish what contribution they make to the three-dimensional anisotropy vector and its components in the inner heliosphere. The 'drift' term is neglected since the focus of this study is on low-energy electrons. The effects on the electron anisotropy of different scenarios when changing the solar wind speed from minimum to maximum activity is illustrated. The effects on both the galactic and Jovian electron anisotropy of changing the polar perpendicular coefficient, in particular, are illustrated. It is shown that the computed Jovian electron anisotropy dominates the galactic anisotropy close to the Jovian electron source at ~5 AU, as expected, testifying to the validity of the3D-model. For the latitudinal anisotropy, the polar perpendicular diffusion plays a dominant role for Jovian electrons close to the source, with the polar gradient becoming the dominant factor away from the electron source. Of all three anisotropy components, the azimuthal anisotropy is dominant in the equatorial plane close to the source. It is found that there is a large azimuthal gradient close to the source because the low-energy electrons tend to follow the heliospheric magnetic field more closely than higher energy particles. The transition of the solar wind speed from minimum to intermediate to maximum solar activity condition was used to illustrate the modulation of the magnitude of the 7 MeV total anisotropy vector along the Ulysses trajectory. It was found that during the two encounters with the planet a maximum anisotropy of 38% was computed but with different anisotropy-timepeaks as the approach to Jupiter was different. / Thesis (M.Sc. (Physics))--North-West University, Potchefstroom Campus, 2007.
6

Reconstrução de chuveiros atmosféricos extensos detectados pelo Observatório Pierre Auger utilizando métodos robustos / Reconstruction of extensive air showers seen by the Pierre Auger Observatory using robust methods

Peixoto, Carlos Jose Todero 28 August 2008 (has links)
Orientador: Carlos Ourivio Escobar / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-11T18:57:31Z (GMT). No. of bitstreams: 1 Peixoto_CarlosJoseTodero_D.pdf: 15351567 bytes, checksum: 33b4f282f53a5669d23f8170b3bbf392 (MD5) Previous issue date: 2008 / Resumo: Desde os primeiros Raios Cósmicos de alta energia detectados por Pierre Auger na década de 30, toda a comunidade de Física de Radiação Cósmica procura técnicas matemáticas e métodos estatísticos mais adequados para analisar estes eventos. Estes processos de análise são imprescindíveis na estimativa da energia da partícula primária, bem como no cálculo do ângulo de chegada q . A estimativa desta energia e do ângulo q é o final de toda uma rede de trabalho e o começo de uma nova linha de pesquisa na busca pelas possíveis fontes que produziram tais eventos. Ao longo deste trabalho refizemos o princípio de reconstrução dos "chuveiros de Auger", os chamados "Chuveiros Atmosféricos Extensos" ( C.A.E.), utilizando um conceito relativamente novo de estatística, hoje denominada Estatística Robusta. O Método dos Mínimos Quadrados ou Least Square -LS, apresentado por Gauss e Legendre, possuía limitações que eles próprios já reconheciam e tentaram resolver, sem sucesso. Desde fins do século XVIII e come¸ co do século XIX, os métodos estritamente paramétricos, em especial o Método dos Mínimos Quadrados e a média aritmética, foram questionados quando utilizados para descrever distribuições pouco comportadas ou com grandes utuações. Algumas das principais questões estavam relacionadas a como tratar pontos muito distantes da distribuição principal (os chamados outliers) e como estes influenciavam a própria distribuição. A saída convencional mais utilizada foi a rejeição dos outliers e de pontos que apresentassem grandes desvios em relação a média. Porém, a perda de informações sobre a própria distribuição tornava-se inevitável. O modelo paramétrico mostrou-se apenas uma aproximação da realidade, uma vez que as flutuações, apesar de serem consideradas, não são "bem-vindas"; são vistas apenas como um erro inerente à observação. Então, no fim do século XIX apareceram as primeiras tentativas de extrair informação das flutuações, classificando-as e as considerando parte integral da descrição da distribuição. Se um método estatístico for capaz de descrever os dados observados, incluindo e classificando as flutuações inerentes, este passa a ser conhecido como "Método Robusto" ou "Estatística Robusta", onde a nomenclatura "Robusta" está relacionada à capacidade do método ou modelo de "resistir" às flutuações fornecendo uma descrição da realidade com razoável independência destas mesmas flutuações. Com base em dois métodos robustos, Mínima Mediana Quadrada (Least Median Square - LMS) e Mínimos Quadrados "Aparados" (Least Trimmed Square - LTS), aplicamos estes nos ajustes da Função Distribuição Lateral de Chuveiros (Lateral Distribution Function - LDF) extraindo o valor de S 1000, parâmetro necessário para estimar a energia da partícula primária. Os valores para S1000 calculados a partir de estatística convencional (Mínimos Quadrados) e estatística robusta (LMS e LTS) são comparados. O valor de S1000, para chuveiros de mesma energia, depende do ângulo q dos primários, já que o CAE sofre atenuação na atmosfera, atenuação esta tanto maior quanto maior, for q . Para levar em conta a atenuação no cálculo do espectro de energia, em que todos os ângulos de chegada são considerados (até 60 graus), é introduzido o parâmetro S38, onde 38 graus é a mediana dos dados do Auger. A atenuação é calculada usando-se o método do Constant Intensity Cut (CIC) o qual depende da validade de várias hipóteses. As três hipóteses supostas pela Colaboração Auger são apresentadas neste trabalho. Correlacionamos, assim, todos os novos valores de S38 com os valores da chamada "Energia Híbrida", obtida diretamente do programa de análise da Colaboração Auger. Esta correlação nos permite recorrigir a energia com base em detecção híbrida, que é a grande vantagem do Observatório Pierre Auger. Esta correlação nos permite estabelecer a escala de energia ou calibração do detector de superfície com base na determinação calorimétrica da energia feita pelo detector de flurescência, que é o grande avançoo trazido para o campo pelo Obvservatório Pierre Auger. Com os novos resultados de energia, refizemos os cálculos de minimização para a correlação de radiação cósmica com fontes extra-galácticas obtendo correlações que não estão em correspondência biunívoca com aquelas obtidas pelo método convencional de análise. Por fim fazemos uma análise das próprias estações outliers tentando extrair alguma informação relacionada à performance do detector de superfície. Os apêndices incluídos após as conclusões foram colocados neste trabalho apenas por motivos didáticos como consulta rápida para o leitor leigo em métodos de detecção de radiação cósmica / Abstract: Since the first ultra high-energy cosmic rays detected by Pierre Auger (the 30s) the entire community of Physics of Cosmic Rays search for mathematical techniques and more appropriate statistical methods to analyze these events. These analysis processes are essential for the estimate of the energy of the primary particle as well as in the calculation of the angle of arrival q . The estimate of the energy and the angle q is the end of a long chain of analysis and the beginning of a new line of research in the search for the possible sources that produced such events. Throughout this work we re-analysed the reconstruction chain of the "Auger showers", the socalled "Extensive Air Showers - EAS", using a relatively new concept of statistics, known as Robust Statistics. The Least Square Method - LS, presented by Gauss and Legendre had limitations already recognized by themselves who tried to overcome them without success. Since the end of the eighteenth century and beginning of the nineteenth century, strictly parametric methods, especially the Least Squares and the arithmetic average, were questioned when used to describe distributions with bad behavior or with large uctuations. Some of the main issues were related to how to deal with points far way from the main distribution (the so-called outliers) and how it in uenced the main distribution. The more conventional way out used was the rejection of the outliers and points that produced large deviations from average. But the loss of information about the distribution was inevitable. The parametric model proved to be only an approximation of reality, since uctuations, despite being considered, are not "welcome"; are seen only as an error inherent in observation. Then, at the end of the nineteenth century there appeared the first attempts to extract information from uctuations sorting them out and considering them as an integral part of the description of the distribution. Whether a statistical method is able to describe observed data, including and sorting the uctuations inherent, then becomes known as "Robust Method" or "Robust Statistic", where the nomenclature "Robust" is related the ability of the method or model to "Resist" the uctuations by providing a description of reality with reasonable independence these same uctuations. Based on two robust methods: Least Median Square - LMS and Least Trimmed Square - LTS; we apply these to adjust the Lateral Distribution Function - LDF extracting the value of S1000, parameter needed to estimate the energy of the primary particle. The values for S1000 calculated from conventional statistic (Least Square) and robust statistic (LMS and LTS) are compared. The parameter S1000 is dependent on the angle of arrival of the shower, then we apply a correction factor called S38. This correlates S1000 and and, currently, there are several ways to calculate this factor. The three hypotheses most used by Auger Collaboration are presented in this work. We then correlate all new values of S38 with the values of the so-called "Hybrid Energy", obtained directly from analysis software of the Auger Collaboration. This relationship allows us to correct the energy based on hybrid detection that is great advantage of the Pierre Auger Observatory. This relationship allows us to establish the energy scale or calibration of the surface detector on the basis of the calorimetric determination of the energy done by the uorescence detector which is the great advancement brought to the field by the Pierre Auger Observatory. With the new results for the energy we reanalysed the the correlation with extra-galactic sources of cosmic ray getting new correlations, which are absent in the conventional methods of analysis. Finally we make an analysis of the surface stations outliers by themselves trying to extract some information relevant for their performance. Appendices included after the conclusions were placed in this work only for a rapid consultation by lay readers in methods of detection of cosmic rays / Doutorado / Teorias Especificas e Modelos de Interação ; Sistematica de Particulas ; Raios Cosmicos / Doutor em Ciências

Page generated in 0.0524 seconds