• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-Gaussian properties of CMBA and constraint on the rotation of the universe. / 宇宙微波背景各向異性的非高斯特性與旋轉宇宙的規範 / Non-Gaussian properties of cosmic microwave background anisotropies and constraint on the rotation of the universe / Non-Gaussian properties of CMBA and constraint on the rotation of the universe. / Yu zhou wei bo bei jing ge xiang yi xing de fei Gaosi te xing yu xuan zhuan yu zhou de gui fan

January 2009 (has links)
by Su, Shi Chun = 宇宙微波背景各向異性的非高斯特性與旋轉宇宙的規範 / by 蘇士俊. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (p. 78-83). / Abstracts in English and Chinese. / by Su, Shi Chun = Yu zhou wei bo bei jing ge xiang yi xing de fei Gaosi te xing yu xuan zhuan yu zhou de gui fan / by Su Shijun. / Chapter 1 --- Review of Cosmic Microwave Background Anisotropies --- p.1 / Chapter 1.1 --- Robertson-Walker metric --- p.1 / Chapter 1.2 --- Cosmological Perturbation --- p.4 / Chapter 1.2.1 --- Scalar-Vector-Tensor Decomposition --- p.6 / Chapter 1.2.2 --- Gauge Transformations --- p.8 / Chapter 1.2.3 --- Scalar Perturbation --- p.8 / Chapter 1.3 --- Sachs-Wolfe Effect --- p.9 / Chapter 1.4 --- Spectrum of CMB Anisotropies --- p.11 / Chapter 1.4.1 --- Rotation Transformation of Spherical Harmonics --- p.14 / Chapter 1.5 --- Contaminations of the CMBA --- p.16 / Chapter 1.5.1 --- The Internal Linear Combination Method --- p.17 / Chapter 2 --- Review of Models of Rotating Universe --- p.22 / Chapter 2.1 --- Godel's Model of a Rotating Universe --- p.23 / Chapter 2.2 --- Bianchi Models of a Rotating Universe --- p.24 / Chapter 2.3 --- Constraints on the Rotation of our Universe --- p.26 / Chapter 3 --- Study of Non-Gaussian Properties of the CMB Anisotropies --- p.31 / Chapter 3.1 --- Methodology --- p.32 / Chapter 3.2 --- Suspicious Anomalies against the IGH --- p.33 / Chapter 3.3 --- Verifications of the Suspicious Anomalies --- p.37 / Chapter 3.3.1 --- Different Cleaning Methods --- p.37 / Chapter 3.3.2 --- Effects of the Foreground Contaminations --- p.39 / Chapter 3.4 --- Further Study and Discussion --- p.52 / Chapter 3.5 --- Conclusions --- p.56 / Chapter 4 --- CMB Constraint on the Rotation of the Universe --- p.57 / Chapter 4.1 --- The Einstein Field Equations with Rotational Perturbations --- p.58 / Chapter 4.2 --- Analytic Solutions of the EFEs for the Rotating Universe --- p.63 / Chapter 4.3 --- The Sachs-Wolfe Effects up to Second-Order due to the Rotation --- p.65 / Chapter 4.4 --- Constraints on Our Model --- p.69 / Chapter 4.5 --- Discussion --- p.72 / Chapter 4.6 --- Conclusions --- p.75 / Chapter 5 --- Summary of the Thesis --- p.76 / Bibliography --- p.78
2

Kinematics and dynamics of the elliptical galaxy NGC 5266.

January 2005 (has links)
In studies of triaxial elliptical galaxies, one of the least observationally studied phenomena is figure rotation. Figure rotation has important consequences for the orbital structure and could explain the survival of steep nuclear cusps. For this project, we thus wish to investigate the possibility of measuring the figure rotation of an elliptical galaxy for which the geometry is approximately known using the Tremaine-Weinberg (TW) method. Originally meant for measuring the pattern speed of barred disk galaxies, we test the validity of the method using NGC 5266, a minor-axis dust-lane elliptical. In the process, the galaxy's line-of-sight velocity distribution (LOSVD) is measured along several slit positions. Measurements of the velocity v, velocity dispersion a, skewness /J3, and kurtosis h^ are derived using the Fourier Correlation Quotient method and a Gauss-Hermite series. This work represents the most detailed stellar kinematic measurements of NGC 5266 to date and confirm that it is one of the fastest rotating elliptical galaxies known today (Varnas et al. 1987). We find a maximum velocity of about 167 km s_1 at both a PA of 274° and 304°. This is compared to a maximum of 212 ± 7kms~1 at a PA of 287° found elsewhere (Varnas et al. 1987). The TW method yields significantly different values for the pattern speed. These vary between -19 and 22kms Wcsec"1. The discrepancy between the results casts doubt on the ability to straightforwardly apply the TW method to elliptical systems, but the study provides some insight into how the method may be more successfully implemented in the future. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.

Page generated in 0.0975 seconds