• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Atmospheric Production and Transport of Cosmogenic <sup>7</sup>Be and <sup>10</sup>Be

Kulan, Abdulhadi January 2007 (has links)
<p>This thesis deals with the atmospheric distribution of the cosmogenic isotopes <sup>7</sup>Be (half-life 53 days) and <sup>10</sup>Be (half-life 1.51 million years) as well as the anthropogenic isotope <sup>137</sup>Cs (half-life 30 years) in aerosols and precipitation. Samples covering continuous or selected parts of the period 1972-2005 in Sweden and Europe are evaluated with respect to production, air mass transport and fallout processes. Such information is valuable in assessing the potential of these isotopes as indicators of air mass mixing and solar modulation factors that affect climate change. The results of <sup>7</sup>Be and <sup>10</sup>Be show seasonal variability and an 11-year cyclic pattern which is anti-correlated with the solar activity. Variations in seasonal trends of <sup>7</sup>Be and <sup>137</sup>Cs in aerosols during the post- and pre-Chernobyl period reflect tropospheric influence from <sup>137</sup>Cs-heavily contaminated regions. A clear latitude dependence is observed in our beryllium isotope data where highest fallout is found in mid-latitudes compared to high and low latitude regions in the Northern hemisphere. This pattern reflects the general air mass circulation in the troposphere. However, stratospheric air mass influence was also identified in mainly single events and through tropopause folding during spring-summer seasons. The ratio of <sup>10</sup>Be/<sup>7</sup>Be is used to estimate effects of air mass transport on production signal. The results show ratios between 1 and 3, much higher than the theoretically predicted value (0.6) in the atmosphere, which suggests contribution from <sup>7</sup>Be-depleted (old) air masses. The relationship between monthly <sup>7</sup>Be atmospheric activity and Total Fractional Cloud Cover (TFCC), collected from satellite imagery, over Sweden for the years (1991-2000) indicates a negative seasonal correlation. This observation can be related to depletion of aerosol from the atmosphere due to trapping in clouds. </p>
2

Atmospheric Production and Transport of Cosmogenic 7Be and 10Be

Kulan, Abdulhadi January 2007 (has links)
This thesis deals with the atmospheric distribution of the cosmogenic isotopes 7Be (half-life 53 days) and 10Be (half-life 1.51 million years) as well as the anthropogenic isotope 137Cs (half-life 30 years) in aerosols and precipitation. Samples covering continuous or selected parts of the period 1972-2005 in Sweden and Europe are evaluated with respect to production, air mass transport and fallout processes. Such information is valuable in assessing the potential of these isotopes as indicators of air mass mixing and solar modulation factors that affect climate change. The results of 7Be and 10Be show seasonal variability and an 11-year cyclic pattern which is anti-correlated with the solar activity. Variations in seasonal trends of 7Be and 137Cs in aerosols during the post- and pre-Chernobyl period reflect tropospheric influence from 137Cs-heavily contaminated regions. A clear latitude dependence is observed in our beryllium isotope data where highest fallout is found in mid-latitudes compared to high and low latitude regions in the Northern hemisphere. This pattern reflects the general air mass circulation in the troposphere. However, stratospheric air mass influence was also identified in mainly single events and through tropopause folding during spring-summer seasons. The ratio of 10Be/7Be is used to estimate effects of air mass transport on production signal. The results show ratios between 1 and 3, much higher than the theoretically predicted value (0.6) in the atmosphere, which suggests contribution from 7Be-depleted (old) air masses. The relationship between monthly 7Be atmospheric activity and Total Fractional Cloud Cover (TFCC), collected from satellite imagery, over Sweden for the years (1991-2000) indicates a negative seasonal correlation. This observation can be related to depletion of aerosol from the atmosphere due to trapping in clouds.

Page generated in 0.0829 seconds