Spelling suggestions: "subject:"cotton -- arizona"" "subject:"cotton -- orizona""
111 |
Pesticide Use in Arizona Cotton: Long-Term Trends and 1999 DataAgnew, G. E., Baker, P. B. January 2000 (has links)
Arizona pesticide use, as reported on the Department of Agriculture's form 1080, can be summarized to provide a rich picture of pest management in Arizona cotton. Limitations in the pesticide use reporting system complicate the process but do not undermine results. Overall pesticide use decreased over the period 1991 to 1998 despite a peak during the whitefly infestation of 1995. Decreases in insecticide use are responsible for most of the reduction in pesticide use. Recently released 1999 data indicates that reductions continued. Comparison of the composition of pesticide applications between 1995 and 1998 reflect the changes in pest control efforts. A new "target pest" category on the 1080 provides an even richer picture of pest management practices in Arizona cotton.
|
112 |
Pink Bollworm Egg Infestations and Larval Survival in NuCOTN 33b and Deltapine Cottons in ArizonaHenneberry, T. J., Forlow Jech, L., de la Torre, T., Faulconer, S, Hill, J. J. January 2000 (has links)
The gene for the Bacillus thuringiensis var. kurstaki (Berliner) insect toxic protein is a new advance in technology for pink bollworm (PBW), Pectinophora gossypiella (Saunders), control. We conducted studies in 1999 to investigate grower concern for reduced efficacy of NuCOTN 33b (Bt cotton) (Monsanto Company, St Louis, MO) in late-season because of breakdown or non-expression of the toxic protein. We compared the susceptibility of Bt and Deltapine 5415 (Monsanto Company, St Louis, MO) (non-Bt) cotton bolls to PBW at periodic intervals during the first and second cotton fruiting cycles. We placed >200 PBW eggs per boll on the inside surface of bracts of susceptible immature cotton bolls. The artificially infested bolls were later harvested and examined for evidence of PBW infestation. High percentages of both Bt and non-Bt cotton bolls had numerous larval entrance holes in the carpel walls of the bolls. Less than 1% of the Bt cotton bolls and over 70% of the non-Bt cotton bolls were found with living PBW larvae. Bt cotton bolls of the late-season second fruiting cycle were as resistant to PBW infestation as Bt cotton bolls of the first fruiting cycle.
|
113 |
Effects of Aqueous Sprays of Silverleaf Whitefly Honeydew Sugars on Cotton Lint StickinessHenneberry, T. J., Forlow Jech, L., Hendrix, D. L., Steele, T. January 2000 (has links)
Sprays of commercially-procured sugars that are also found in silverleaf whitefly Bemisia argentifolii Bellows and Perring [= B. tabaci (Gennadius) Strain B] honeydew were applied to clean cotton lint to determine the relationship between the sugars and cotton lint stickiness. Increasing concentrations of the sugars resulted in increasing thermodetector counts.
|
114 |
Use of Insect Growth Regulators and Changing Whitefly Control Costs in Arizona CottonAgnew, G. Ken, Frisvold, George B., Baker, Paul January 2000 (has links)
In 1996, two Insect Growth Regulators (IGRs), pyriproxyfen (Knack®) and buprofezin (Applaud®) became available to Arizona cotton growers for control of whitefly, Bemisia argentifolii under a Section 18 EPA exemption. This study makes use of a section-level database to examine (a) factors explaining IGR adoption and (b) how adopters of IGRs altered their overall insecticide use to control whiteflies. IGR adoption can be explained to a large extent by location effects. Adoption was more likely on sections where an index of whitefly susceptibility to synergized pyrethroids was low and on sections with higher whitefly control costs in the previous year. Adoption was inversely related to local population density. On sections where growers adopted IGRs, expenditures on synergized pyrethroid and other whitefly-specific tank mix applications fell by $62.52 per acre. On sections with no IGR adoption, tank mix expenditures fell less, by $44.37 per acre. On adopting sections, net costs of controlling whiteflies fell by $29.62 per acre, or by over $11,000 per farm.
|
115 |
Effect of Halosulfuron (Permit), CGA362622, Glyphosate (Roundup Ultra) and Pyrithiobac (Staple) on Purple Nutsedge Growing in a Fallow FieldVeatch, Maren E., McCloskey, William B. January 2000 (has links)
In the fall of 1999 an experiment was conducted to measure the effect of CGA- 362622, halosulfuron (Permit), glyphosate (Roundup Ultra) and Pyrithiobac (Staple) on purple nutsedge. Five rates of Permit (0.25, 0.375, 0.495, 0.75 and 1.0 oz a.i./A), three rates of CGA-362622 (3.035, 4.047, and 6.07 g a.i./A), and a single rate each of Roundup Ultra (0.75 lb a.e./A), Staple (1.5 oz a.i./A), Staple + Bueno 6 (2 lb a.i./A), and Staple + Fusilade (0.25 lb a.i./A) were applied either once or twice to field populations of purple nutsedge. Efficacy of each treatment was measured in three ways: phytotoxicity (stunting, chlorosis and/or necrosis) ratings were assigned to each plot (0 being no injury and 10 indicating death), the number of green leaves were counted on 3 large ($8 leaves) and 3 small (≤4 leaves) plants per plot at various times after treatment, and the amount of regrowth after the herbicide treatments was assessed. All of the herbicide treatments caused stunting, induced chlorosis and necrosis, and were fairly effective in controlling nutsedge plants treated at or before the 4-leaf growth stage. Only Permit and CGA-362622 effectively controlled plants treated at the 8-leaf growth stage after one application. The other four herbicides required two applications to obtain effective control. For the regrowth parameter parameters, Permit, CGA-362622 and Roundup Ultra effectively controlled regrowth, but the Staple, Staple + Bueno 6 and the Staple + Fusilade treatments did not control regrowth. Two applications of Permit at the .495 oz a.i./A or greater rates, Roundup Ultra (0.75 lb a.e./A) and 1 or 2 applications of the 6.070 g a.i./A rate of CGA-362622 controlled nutsedge with respect to all measured regrowth parameters and may be the best choices for controlling purple nutsedge.
|
116 |
Lygus Control Decision Aids for Arizona CottonEllsworth, Peter C. January 2000 (has links)
Changes in insecticide use, available pest control technologies, and local crop ecology together with severely depressed cotton prices place a renewed premium on Lygus control decision aids for Arizona cotton. As part of an on-going program to develop research-based Lygus management recommendations, we investigated the impact of various timings of chemical controls on Lygus population dynamics, number of sprays, costs of control, and net revenue as well as cotton heights, trash, lint turnouts, and yields. Once there were at least 15 total Lygus per 100 sweeps, sprays were made according to the number of nymphs in the sample (0, 1, 4, 8 or 16 per 100 sweeps). Up to 7 sprays were required (15/0 regime) to meet the needs of the target threshold. Lygus adult densities were largely unresponsive to the treatment regimes or individual sprays made. Three generations of nymphs, however, were affected by the treatments with the ‘15/4’ regime harboring the fewest nymphs through July. This ‘moderate’ regime required 4 sprays and had the shortest plants, cleanest harvest, and highest lint turnouts. In addition, this regime out-yielded all other treatment regimes including the 6- (15/ 1) and 7- (15/0) spray regimes. Regression analyses of the data suggest that adult Lygus are less related to yield loss than nymphs and that large nymphs are best correlated with yield loss. Thus, spraying based on adults only would appear illadvised. Returns were highest ($747/A) for the 15/4 regime with over $100 more than the more protective regimes. Thus, there is no economic advantage in advancing chemical control when nymph levels are low. Maximum economic gain was achieved by waiting for the 4 nymphs per 100 level (with 15 total Lygus/100; 15/4) before spraying. However, waiting too long (beyond the 8 nymphs / 100 level; 15/8) resulted in significant reductions in yield and revenue. Our recommendations, therefore, are to apply insecticides against Lygus when there are at least 15 total Lygus, including at least 4 nymphs, per 100 sweeps. These recommendations are stable over a wide variety of economic conditions (market prices & insecticide costs). Continued work is necessary to verify these findings over a wider range of cotton developmental stages, varieties, and other environmental conditions.
|
117 |
Silverleaf Whitefly - Trichome Density Relationships on Selected Upland Cotton CultivarsChu, C. C., Natwick, E. T., Henneberry, T. J. January 2000 (has links)
We studied silverleaf whitefly (SLW) and trichome density relationships on ten selected upland cotton cultivars: Deltapine #20B, 50B and 90B, NuCOTN 33B, Stoneville 474, Fibermax #819 and 832, Siokra L-23, and 89013-114 at Maricopa, in AZ, 1999. Whitefly and stellate trichome densities were counted on leaves on main stem leaf nodes #1, 3, 5 and 7 of each cultivar. Stoneville 474 had about 2-3 times more eggs, nymphs, and adults and also had 3-30 times more branched trichomes on abaxial leaf surfaces compared with the nine other cultivars. The top young leaves on node #1 had about 6 times more stellate trichomes compared with older leaves. However, the top young leaves also had reduced numbers of eggs and nymphs (23 and 1/cm2 of leaf disk, respectively) compared with older leaves. The results suggest that other factors, in addition to trichomes, at least for young terminal leaves, affect silverleaf whitefly population development.
|
118 |
Susceptibility of Arizona Whiteflies to Chloronicotinyl Insecticides and IRGs: New Developments in the 1999 SeasonLi, Yongsheng, Dennehy, Timothy J., Li, Xiaohua, Wigert, Monika E. January 2000 (has links)
Whiteflies are serious pests of cotton, melons, and winter vegetables in Arizona’s low deserts. Successful management of whiteflies requires an integrated approach, a critical element of which is routine pest monitoring. In this paper we report findings of our 1999 investigations of resistance of Arizona whiteflies to insect growth regulators (IGRs) and chloronicotinyl insecticides. Whiteflies collected from cotton fields, melon fields and greenhouses were tested for susceptibility to imidacloprid (Admire/Provado), and two other chloronicotinyl insecticides, acetamiprid and thiamethoxam, and to two insect growth regulators (IGRs), buprofezin (Applaud) and pyriproxyfen (Knack). Contrasts of 1999 and 1998 results indicated increased susceptibilities, on average, to both imidacloprid and buprofezin of whiteflies collected from cotton. A cropping system study showed that whiteflies collected from spring melons had significantly lower susceptibility to imidacloprid than those collected from cotton or fall melons. The opposite was found for pyriproxyfen, to which whiteflies from cotton and fall melons had lower susceptibility than those from spring melons. As in 1998, whiteflies with reduced susceptibility to imidacloprid continue to be found in certain locations, particularly in spring melon fields and greenhouses. Results of our laboratory bioassays on susceptibility of Arizona whiteflies to chloronicotinyl insecticides provided evidence of a low order cross-resistance between imidacloprid, acetamiprid and thiamethoxam. Monitoring in 1999 provided the first evidence of reduced susceptibility of Arizona whiteflies to pyriproxyfen.
|
119 |
Reduced Whitefly Infestations in Cotton Using a Melon Trap CropCastle, S. J. January 2000 (has links)
A second year of field experiments was completed in 1999 at MAC that explored the potential of using a melon trap crop to reduce whitefly infestations in cotton. The experimental design was altered from 1998 to gain isolation among treatment blocks by using 4 separate fields that helped to avoid the influence of one treatment upon the other. A consistent response of significantly fewer whiteflies in cotton planted within a surrounding melon trap crop, relative to the same area of cotton without the trap crop, was observed throughout the July- September sampling period. Better chemical management of whiteflies in the melons during the second season helped to reduce the large differential in whitefly densities between melons and cotton observed the previous year, but preferentially contributed to a greater differential observed between melonprotected cotton and unprotected cotton. Although the infestation buildup was delayed and the season-long densities of whiteflies in the melon-protected cotton were reduced, the action thresholds for treatment with IGRs were ultimately attained and exceeded. In the present management environment of perhaps only 1 IGR treatment per season, it is unlikely that the melon trap crop approach would provide acceptable control unless a grower was willing to tolerate lateseason whitefly densities higher than the current IPM recommendations.
|
120 |
Johnsongrass Control in Cotton with BAS 620Clay, P. A., Isom, L. D. January 2000 (has links)
Johnsongrass control with BAS 620 was 60% and 67% for the 0.124 and 0.248 lb ai/A rates respectively, 14 d after initial application. Control was comparable to Select at the corresponding rates. Control 28 d after the second application of graminicides ranged from 60% to 88%. Both rates of BAS 620 and Select as well as Fusilade DX provided the most effective control. Seed cotton yields ranged from 1347 to 3134 lbs/A and all herbicide treatments yielded significantly greater than the nontreated check.
|
Page generated in 0.0483 seconds