• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 144
  • 8
  • Tagged with
  • 158
  • 158
  • 150
  • 141
  • 28
  • 19
  • 6
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Sampling Variation in Petiole Nitrogen

Tabor, J. A., Pennington, D. A., Warrick, A. W. 02 1900 (has links)
No description available.
152

PHYSIOLOGICAL AND REPRODUCTIVE DEVELOPMENT OF DRIP IRRIGATED COTTON (GOSSYPIUM HIRSUTUM L.).

Cain, Cyra Jane. January 1984 (has links)
No description available.
153

Water status determination by sensing stem diameter in cotton plants

Diaz-Munoz, Fidel January 1981 (has links)
No description available.
154

Soil water potential as related to the Crop Water Stress Index of irrigated cotton

Copeland, Stephen Mark, 1955- January 1989 (has links)
The application of the crop water stress index (CWSI) method to irrigation scheduling is enhanced by knowledge of the relationship between CWSI and soil water potential (SWP) and how this relationship is affected by soil texture. A study using the same cultivar of cotton on three different soils was conducted in southern Arizona over a single growing season. Detailed data were collected of CWSI and soil moisture content for several treatments that scheduled irrigations at threshold CWSI values. CWSI was correlated with soil water potential values calculated from pressure plate determined moisture release curves. Spatial variability of soil characteristics necessitated use of average rather than plot specific moisture release curves. Analysis showed a linear CWSI-SWP relationship that varied greatly with soil depth and study site. The study concluded that soil profile average SWP alone does not normalize the CWSI between sites with different soil textures.
155

EARLY SEASON ABUNDANCE AND DISTRIBUTION OF LYGUS BUGS, PREDATORS, AND EXTRAFLORAL NECTAR IN DRIP AND FURROW-IRRIGATED COTTON (PEST MANAGEMENT, AGGREGATION, ARIZONA).

ZWICK, FAITH BLERSCH. January 1984 (has links)
Lygus bug (Lygus Hahn) and predator (Chrysopa carnea Stephens, Geocoris, and Nabis) abundance and spatial distribution in production-managed, drop and furrow-irrigated cotton (Gossypium hirsutum L.) in central Arizona were compared during the early seasons of 1980-1983. Sweep net and drop cloth samples revealed lygus bug populations were established and reached pest status in drip-irrigated cotton 2-3 weeks prior to those in furrow. Several factors combined to make drip cotton more favorable than furrow for Lygus: more dense plant populations, taller plants, lower vapor pressure deficits within the plant canopy, and earlier availability of squares. Within furrow-irrigated cotton, lygus bugs and the percent Lygus-damaged squares were greater in areas of tall, dense plantings, primarily in areas distant from the water source. In drip, damage was significantly greater than in furrow, and comparable in all field ares. Predator populations were not consistently greater under either irrigation system. Under furrow, Geocoris and Nabis populations were greatest in areas of Lygus abundance. Morisita's index and Taylor's power law indicated a higher degree of aggregation in the spatial patterns of Lygus and predator populations in furrow-irrigated cotton than in drip. The two indices agreed in magnitude and trend across the insects studied, but Morisita's index was more frequently significant for contagion. Sweep net samples revealed a higher degree of aggregation than drop cloth. Taylor's coefficients were used to determine optimum sweep net and drop cloth sample sizes to evaluate Lygus populations for pest management. The sweep net requires a greater sample size than the drop cloth to ensure a given level of precision, and more samples are required in furrow-irrigated cotton than in drip. Based on percent damage and the relative variability of damage estimates, the number of squares examined for lygus bug damage should be comparable in all drip field areas, but twice as many should be examined in the furrow head-water as in the middle and tailwater. Extrafloral nectar volumes are greatest in leaves of the middle and top plant regions, and in the blossom and young boll stages of fruiting bodies. Irrigation timing and method affect nectar production. The effects of extrafloral nectar production phenology on insect distribution are discussed.
156

Irrigation Requirements of Cotton on Clay Loam Soils in the Salt River Valley

Harris, Karl, Hawkins, R. S. 03 1900 (has links)
No description available.
157

The Use and Duty of Water in the Salt River Valley

Marr, James C., Smith, G. E. P. 01 July 1927 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project. / Preface by G. E. P. Smith
158

The economics of crop response to irrigation quantity and scheduling: an Arizona case study

Stearns, Peter Brooks January 1980 (has links)
No description available.

Page generated in 0.0985 seconds