• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • Tagged with
  • 35
  • 35
  • 35
  • 35
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Comparison of Three Cotton Tillage Systems: Six Year Summary

Coates, Wayne E., Thacker, Gary W. 03 1900 (has links)
Two reduced cotton tillage systems, both of which utilize controlled traffic farming techniques, were compared to a conventional tillage system in terms of energy requirements, field work time requirements, crop yield, and operating costs. Six seasons of testing show the Sundance system to have the lowest energy requirement of 31.95 Hp- Hr /Ac, the Uprooter -Shredder-Mulcher the second lowest at 47.16 Hp- Hr /Ac, and conventional tillage the highest at 66.89 Hp- Hr /Ac. Field work times of the two reduced tillage systems were about 58% that of conventional tillage. Costs of the two reduced tillage systems are lower than for conventional tillage. We have never measured a significantly lower lint yield with either of the two reduced tillage systems, relative to conventional tillage.
2

The Pegasus Rapid Plowdown System: A New Concept in Cotton Tillage

Thacker, Gary W., Coates, Wayne E. 03 1900 (has links)
This new concept in tillage is to open a deep, temporary slot next to the cotton row and to insert the stalks and/or roots into the slot before the soil falls back in. The Pegasus Rapid Plow Down System is a relatively simple implement which offers good residue burial and reliability. Our limited field test data indicate that this invention requires less energy and field work time than conventional tillage systems.
3

Nitrogen, Phosphorus, and Potassium Uptake by Upland and Pima Cotton

Unruh, B. L., Silvertooth, J. C., Steger, A. J., Norton, E. R. 03 1900 (has links)
Several investigations of nitrogen (N), phosphorus (P), and potassium (K) uptake by Upland cotton (Gossypium hirsutum L.) have been conduced, however no investigations of this type have included American Pima cotton (G. barbadense L.). We conducted a study to describe the total N, P, and K uptake and the partitioning of each nutrient into various plant parts for both Upland and Pima cotton. During the growing seasons of 1990, 1991, and 1992 at two south-central Arizona locations, both Upland (var. DPL 90) and Pima (var. S-6) cotton were grown. Beginning 14 to 20 d after emergence, whole cotton plants were removed and cotton plants were separated into stems, leaves (including petioles), burs (carpel walls), lint, and seeds. The bur fraction, also included squares, flowers, immature bolls, and burs from mature bolls. The appropriate analyses for total N, P, and K were determined on each fraction (except lint). Regression analyses was used to model nutrient uptake as a function of both days after planting (DAP) and heat units after planting (HUAP). Regression analyses indicated that HUAP was equally good, and in most cases superior to using DAP to model total nutrient uptake and partitioning within both Upland and Pima cotton. In every case there was close agreement between the predicted and actual total nutrient uptake. For Upland cotton the actual total N, P, and K uptake was 199, 29, and 250 kg ha⁻¹ and the predicted total N, P, and K uptake was 199, 29, and 255 kg ha⁻¹, respectively. For Pima cotton the actual total N, P, and K uptake was 196, 29, and 215 kg ha⁻¹ and the predicted was 210, 29, and 229 kg ha⁻¹, respectively. The pattern of nutrient partitioning in Upland cotton were similar to the findings of others and Pima showed the same general patterns of partitioning as Upland cotton. Seeds were a major sink of nutrients. Nutrient uptake in seeds resulted in decreasing uptake in leaves and stems. Presumably, due to mobilization of nutrients from those parts to the seeds during seed development. The nutrient requirements to produce 100 kg lint ha' for Upland cotton was 15, 2.2, and 19 kg ha⁻¹ for N, P, and K, respectively and was 20, 3.0, and 22 kg ha⁻¹, respectively for Pima cotton.
4

Nitrogen Management Experiments for Upland and Pima Cotton, 1993

Silvertooth, J. C., Norton, E. R., Unruh, B. L., Clark, L. J., Carpenter, E. W. 03 1900 (has links)
Two field experiments were conducted in Arizona in 1993 at two locations (Maricopa and Safford). Both experiments have been conducted for five consecutive seasons, with consistent plot locations. The purposes of the experiments were to validate and refine nitrogen (N) fertilization recommendations for both Upland and Pima cotton. The experiments each utilized N management tools such as pre - season soil tests for NO₃⁻-N, in-season plant tissue testing (petioles) for N fertility status, and crop monitoring to ascertain crop fruiting patterns and crop N needs. Results at both locations revealed a strong relationship between the crop fruit retention levels and N needs for the crop. This pattern was further reflected in final yield analysis as a response to the N fertilization regimes used. The effects of N fertility levels have been consistently evident in crop maturity and its relationship to lint yields.
5

Potassium Fertilization of Upland and Pima Cotton

Unruh, B. L., Silvertooth, J. C., Galadima, A., Clark, L. J., Norton, E. R. 03 1900 (has links)
In a continuing effort to assess the agronomic necessity of potassium (K) fertilization in Arizona cotton (Gossypium spp.) production, one new and two on-going (Maricopa and Safford Ag. Centers), K fertility studies were conducted in 1993. They included locations ranging from western (Yuma) to eastern (Safford) Arizona, with both Upland (G. hirsutum L.) and American Pima (G. barbadense L.) cotton, using soil and foliar applications of K. The results indicated that there was no response to the added K at any of the locations by either Upland or Pima cotton.
6

Evaluation of a Feedback Approach to Nitrogen and Pix Application

Silvertooth, J. C., Norton, E. R., Unruh, B. L. 03 1900 (has links)
A single field experiment was conducted in 1994 at Maricopa, AZ to compare a scheduled approach (based on stage of growth) versus a feedback approach (based on vegetative status) to both nitrogen (N) and mepiquat chloride (PIX™) applications on Upland cotton (Gossypium hirsutum L.). PIX feedback treatments were based upon fruit retention (FR) levels and height: node ratios (HNRs) according to established baselines. Scheduled PIX applications were made for a total of 1.0 pt./acre over two applications, with feedback PIX treatments receiving a single 0.5 pt./acre application near peak bloom (approx. 2200 heat units after planting (HUAP), 86/55 °F threshold) Scheduled applications of fertilizer N totaled 225 lbs. N/acre from four applications and feedback N treatments received a total of 135 lbs. N/acre from three 45 lb. N/acre applications. Treatments consisted of all combinations of scheduled or feedback applications of both N and PIX. The highest lint yields were from a treatment receiving feedback N and PIX and a treatment receiving scheduled N and PIX, which were not significantly differencent (P ≤ 0.05) from one another. From a practical standpoint, however, these treatments were very different in terms of the magnitude in differences of fertilizer N and PIX required to produce comparable yields.
7

Nitrogen Management BMPs Parker Valley Demonstration

Watson, J., Winans, S., Sheedy, M. 03 1900 (has links)
A nitrogen management demonstration was conducted in the Parker Valley in 1994. Grower nitrogen application practices were compared with nitrogen application recommendations based upon pre plant soil samples plus petiole nitrates and plant mapping data. The only significant difference in amounts applied occurred in May, with grower applied rates exceeding recommended rates. Grower rationale for the application was logical, however, it being dependent upon the uncertainty of irrigation timing in June.
8

Nitrogen Management Experiments for Upland and Pima Cotton, 1994

Silvertooth, J. C., Norton, E. R., Unruh, B. L., Navarro, J. A., Clark, L. J., Carpenter, E. W. 03 1900 (has links)
Three field experiments were conducted in Arizona in 1994 at three locations ( Maricopa, Marana, and Safford). The Maricopa and Safford experiments have been conducted for six consecutive seasons, with consistent plot locations; the Marana site was initiated in 1994. The purposes of the experiments were to validate and refine nitrogen (N) fertilization recommendations for both Upland and Pima cotton. The experiments each utilized N management tools such as pre-season soil tests for NO₃⁻-N, in-season plant tissue testing (petioles) for N fertility status, and crop monitoring to ascertain crop fruiting patterns and crop N needs. Results at each location revealed a strong relationship between the crop fruit retention levels and N needs for the crop. This pattern was further reflected in final yield analysis as a response to the N fertilization regimes used. The effects of N fertility levels have been consistently evident in crop maturity and its relationship to lint yields.
9

Effect of Soil and Foliar Applied Potassium on Pima and Upland Cotton at Two Arizona Locations

Galadima, A., Silvertooth, J. C., Unruh, B. L., Norton, E. R. 03 1900 (has links)
Due to increasing emphasis and interest being placed on cotton (Gossypium spp.) fiber quality as well as yield benefits associated with potassium (K) fertilization, two studies were conducted in 1994. These studies with those before them were aimed at assessing the agronomic necessity of K fertilization in Arizona cotton production. The locations of the trials included Maricopa Agricultural Center (Casa Grande sandy loam) and Safford Agricultural Center (Pima clay loam). At the Safford location, both Upland (G. hirsutum L., var. DPL 90) and Pima (G. barbadense L., var. S-7) cotton were planted with treatments that included both soil and foliar K applications. The trials at Maricopa Agricultural Center included four foliar K applications over the growing season on Pima (G barbadense L., var. S-7) cotton. The results of the experiments at both locations indicated no lint yield responses to K fertilization by either Upland or Pima cotton.
10

Evaluation of Soil Conditioners and Water Treatments for Cotton Production Systems

Unruh, B. L., Silvertooth, J. C., Sanchez, C. A., Norton, E. R. 03 1900 (has links)
Advanced technologies to produce synthetic polymers such as polyacrylamide (PAS, and polymaleic anhydride (PMA) have produced products which may be economically feasible alternatives to traditional treatments such as gypsum in the desert Southwest. In 1994 three field studies were initiated, two identical studies were located in the Yuma Valley and one at Paloma Ranch. At Yuma Valley the experiments included 0, 1, and 2 tons gypsum/acre, over which, various soil-applied treatments were made; including, a check, soluble PMA (Sper Sal™), and PAM (Hydro-Growth™). Upland cotton 'DPL 5461' was grown in both Yuma Valley studies. At Paloma Ranch, Upland 'DPL 5415' planted. Prior to planting, two gypsum applications were made at 0 and 2 tons/acre. Also included as treatments were various methods and rates of Sper Salt™. No differences among treatments were detected in either of these locations relative to crop yield. At Paloma Ranch there were some early-season differences in soil crusting among the various soil amendment treatments, however, these differences dissipated as the season progressed and did not result in lint yield differences.

Page generated in 0.1066 seconds