• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Induksie van B-1,3 glukanase en chitinase iso-ensieme in katoenplante deur elisitormolekule van die patogeen, Verticillium dahliae

Slater, Vernon 02 April 2014 (has links)
M.Sc. / Inducible defence responses in both a susceptible cotton cultivar ( Acala ) and a resistant cotton cultivar ( OR-19 ) in response to elicitors fromVerticillium dahliae were investigated. These oligosaccharin elicitors represent the heat solubilized, non-dialyzable fraction of the pathogen cell wall. This elicitorfraction consist of 6.57 % protein and 68 % carbohydrate and represent merely a discrete portion of the cell wall. Moreover, symptoms such as chlorosis and necrosis were induced by the elicitor in both cultivars, but the timing and magnitute of symptom development differed in that the symptoms occurred much faster and were more intense ( hypersensitive response) in the resistant cultivar. An effective elicitor concentration of 30 ug/ ml ( = 21 ug glucose equivalents) was determined and used throughout this study. Inducible defence responses i.e, the accumulation of PR-proteins and specifically activities of B-1,3-glucanase and chitinase were investigated in the intercellular environment as well as cellular extractions of both cultivars. An attempt was also made to analyse the expression of B-1 ,3-glucanase and chitinase genes at them RNA level ( level of transcription) and to correlate it to the determined levels of enzyme activities. Lignification as well as smaller plant metabolites i.e, sesquiterpenoid-phytoalexins relating to pathogenesis that are induced by the elicitor, were also investigated in both cultivars. In this study it is shown that differences are found between Acala and OR-19 and that some of these differences can be correlated to plant resistance. These differences found in the time studies ( intensity, time of response, qualitative and quantitative differences ) of the defence responses induced in both cultivars is discussed against the background of disease resistance.
2

Suiwering en karakterisering van fenielalanienammoniakliase van katoen, Gossypium hirsutum, en die rol van geinduseerde lignifisering as verdedigingsmeganisme in die interaksie met Verticillium dahliae

Smit, Franchoan 24 April 2014 (has links)
D.Sc. (Biochemistry) / Please refer to full text to view abstract
3

Spesifieke binding van 'n fitotoksien van die patogeen Verticillium dahliae aan selmembrane van katoen

Meyer, Riaan 01 September 2015 (has links)
M.Sc. / A phytotoxic protein-lipopolysaccharide complex (PLPC) was isolated from 7 day old culture filtrates of Verticillium dahliae. The complex was purified to electrophoretic homogeneily by means of acetone precipitation, gel, chromatography and preparative agarose electrophoresis with a yield of 4.5 mg PLPC per litre culture filtrate ...
4

Molecular characterization of elicitor-responsive genes in cotton

Phillips, Sonia Melanie 02 May 2012 (has links)
D.Phil. / The fungus, Verticillium dahliae, is the causative agent of Verticillium wilt, which results in significant cotton (Gossypium hirsutum) crop losses worldwide. This study contributes to the elucidation of cotton defence responses against V. dahliae. The identification, cloning and characterization of three genes that were differentially expressed in response to elicitation with a cell wall-derived (CWD) V. dahliae elicitor are described. It was hypothesized that the molecular architectures of the three characterized genes are supportive of a role in cotton defence against V. dahliae. As one of these genes was present as two homoeologous copies, this study also reports on the molecular characterization of both homoeologs, thus providing further insight into the processes of genomic evolution between homoeologous loci in allotetraploid cotton. The three genes were initially represented as expressed sequence tags (ESTs), obtained from a previous differential display reverse transcription polymerase chain reaction (DDRT-PCR) study by Zwiegelaar (2003), as part of an MSc project. These ESTs, designated C1B10, C4B5 and C4B4, were differentially induced upon elicitation with a CWD V. dahliae elicitor (Zwiegelaar, 2003). In the present study, the genes represented by the three ESTs were identified and characterized by genome walking and 5‘/3‘ rapid amplification of cDNA ends (RACE). Additionally, PCR and reverse-transcription PCR (RT-PCR) were utilized, where necessary, to obtain internal sequences, not covered by the genome walking and RACE reactions. Through the use of these molecular techniques, the full transcript and genomic sequences of each of the three genes was obtained, including their promoters. The promoter of each gene was analyzed for cis-elements driving gene transcription, through bioinformatic analysis. Furthermore, the copy number of each gene was determined through Southern blot analysis. The genes were translated to reveal their encoded protein sequences. The amino acid sequences were submitted to a basic local alignment (BLAST) search of the NCBI database to identify, and align them with, homologous proteins from other plant species (and those from G. hirsutum, if any). An in silico analysis of the encoded protein of each gene was also performed. This examination included domain architecture, post-translational modification, subcellular location and tertiary structure predictions. This study also involved the isolation of the elicitor from the cell walls of V. dahliae fungal cultures. The potency of the freshly-isolated elicitor was investigated with a triphenyltetrazolium chloride (TTC) viability assay on cotton cell suspensions. Its potential to induce PR-proteins was also explored but these results were inconclusive. In addition, expression studies were performed with real-time PCR (q-PCR), to confirm the up- or down-regulation of each gene upon elicitation of cotton cell suspensions with the CWD V. dahliae elicitor, and to investigate the time frame/kinetics of induction. The gene corresponding to the C1B10 EST was designated GhLIPN as this study revealed that it encodes a lipin protein. Lipins are novel proteins with phosphatidate phosphatase 1 (PAP1) activity, exclusive to eukaryotes. They play a fundamental role in the lipid metabolism of organisms ranging in complexity from yeast to animals and plants. In plants, this role includes lipid membrane remodelling during phosphate (Pi) deficiency. During the study of the GhLIPN gene, it was discovered that it occurred as two distinct homoeologous copies from the A- and D-co-resident genomes of allopolyploid G. hirsutum. The GhLIPN homoeologs were named GhLIPN I and N for Insert present and No insert, respectively, based on the presence or absence of a 13 base pair (bp) insertion/deletion (indel) site in intron 6.

Page generated in 0.078 seconds