• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 7
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 41
  • 41
  • 14
  • 13
  • 11
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulations of nonlinear flow in spherical system

Zhang, Pu January 2002 (has links)
No description available.
2

Linear Stability of Plane Couette Flow at Moderate Reynolds Numbers

Sirisup, Sirod January 2000 (has links)
No description available.
3

Computations of the interface in two-fluid Couette flow

de Oliveira, Ebenezer 30 September 2020 (has links)
No description available.
4

Equilibrium and stability of magnetohydrodynamic flows in annular channels

Khalzov, Ivan 25 January 2008
Magnetohydrodynamic (MHD) flows in annular channels are of great current interest due to experimental search for the so-called magnetorotational instability (MRI) which is important for astrophysical applications (accretion disk physics, magnetic dynamo effect). <p>The main point of MRI experiments is to study the stability of liquid metal rotating in an external magnetic field. Two different types of fluid rotation are proposed: Taylor-Couette flow between rotating coaxial cylinders and electrically driven flow in transverse magnetic field. The implementation of MRI experiments and explanation of experimental results requires a theoretical study of the equilibrium and the stability of MHD flow in an annular channel. This is one of the main tasks of present thesis.<p>For study of equilibrium Taylor-Couette and electrically driven flows, a numerical code is developed which is based on the finite difference scheme with Jacobi iterations. The structure of flows is calculated for different parameters of the experiment. Effect of the inertia on the rotation profiles is investigated in detail. The approximate analytical expressions are obtained for radial profiles of rotation that can be used for optimization of the experimental device for MRI investigation. Equilibrium Taylor-Couette and electrically driven flows are compared from the perspective of experimental studies of MRI.<p>The spectral stability of electrically driven flow is studied by solving the eigen-value problem. This study is performed in the frames of both ideal and dissipative MHD models. It is shown that electrically driven flow can be destabilized through the mechanism of MRI if fluid velocity exceeds some instability threshold, which is determined by non-axisymmetric modes. The obtained results are compared with available experimental data.<p>A general variational method is developed for the stability study of MHD flows of ideal compressible fluids. It is shown that the linearized dynamics of such fluids has an infinite set of invariants. A necessary and sufficient stability criterion can be obtained after inclusion of one or several such invariants in analysis. An analytical example is presented to confirm the fruitfulness of the developed method.
5

Equilibrium and stability of magnetohydrodynamic flows in annular channels

Khalzov, Ivan 25 January 2008 (has links)
Magnetohydrodynamic (MHD) flows in annular channels are of great current interest due to experimental search for the so-called magnetorotational instability (MRI) which is important for astrophysical applications (accretion disk physics, magnetic dynamo effect). <p>The main point of MRI experiments is to study the stability of liquid metal rotating in an external magnetic field. Two different types of fluid rotation are proposed: Taylor-Couette flow between rotating coaxial cylinders and electrically driven flow in transverse magnetic field. The implementation of MRI experiments and explanation of experimental results requires a theoretical study of the equilibrium and the stability of MHD flow in an annular channel. This is one of the main tasks of present thesis.<p>For study of equilibrium Taylor-Couette and electrically driven flows, a numerical code is developed which is based on the finite difference scheme with Jacobi iterations. The structure of flows is calculated for different parameters of the experiment. Effect of the inertia on the rotation profiles is investigated in detail. The approximate analytical expressions are obtained for radial profiles of rotation that can be used for optimization of the experimental device for MRI investigation. Equilibrium Taylor-Couette and electrically driven flows are compared from the perspective of experimental studies of MRI.<p>The spectral stability of electrically driven flow is studied by solving the eigen-value problem. This study is performed in the frames of both ideal and dissipative MHD models. It is shown that electrically driven flow can be destabilized through the mechanism of MRI if fluid velocity exceeds some instability threshold, which is determined by non-axisymmetric modes. The obtained results are compared with available experimental data.<p>A general variational method is developed for the stability study of MHD flows of ideal compressible fluids. It is shown that the linearized dynamics of such fluids has an infinite set of invariants. A necessary and sufficient stability criterion can be obtained after inclusion of one or several such invariants in analysis. An analytical example is presented to confirm the fruitfulness of the developed method.
6

Development of a non-Newtonian latching device

Anderson, Brian January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / B. Terry Beck / The objective of this project was to first evaluate the feasibility of developing a viscous damping device that used a Non-Newtonian Shear Thickening Fluid (STF) and incorporating it as a door latch into an existing commercial dryer unit. The device would keep the door closed during sudden large magnitude impact loads while still allowing the door to open normally when force is applied gradually at the door handle. The first phase of the project involved performing background research on the subject and performing preliminary analysis in order to determine if the concept was feasible enough to be worth constructing a physical prototype. This preliminary analysis consisted of a literature review of existing damping mechanisms and shear thickening fluids, rheometer testing of shear thickening suspensions to obtain viscosity data, and performing numerical simulations to determine if a damper that fit the size requirements could produce enough resistance force. The focus for the second phase of the project was to demonstrate a proof of concept in the form of a working model prototype. This prototype did not need be of identical shape and proportions as the finalized design, but would be developed to facilitate experimental testing and evaluation of performance under the desired operating conditions. It was also necessary to design and construct the test setup for the dynamic testing of the dryer door opening so that the opening displacement as well as the force applied to the door could be recorded as a function of time. The final phase of the project consisted of improving upon the original prototype in order to prove the validity of a viscous latch beyond the proof of concept phase in a form closer to what is desired for the commercial product. This required reducing the physical size of the new prototype latch so as to fit within the space available in a particular dryer, incorporate a one-way ratcheting device into the latch to allow unrestricted closing of the door, and increase the operational temperature range of the damper.
7

Nonlinear solutions of the amplitude equations governing fluid flow in rotating spherical geometries

Blockley, Edward William January 2008 (has links)
We are interested in the onset of instability of the axisymmetric flow between two concentric spherical shells that differentially rotate about a common axis in the narrow-gap limit. The expected mode of instability takes the form of roughly square axisymmetric Taylor vortices which arise in the vicinity of the equator and are modulated on a latitudinal length scale large compared to the gap width but small compared to the shell radii. At the heart of the difficulties faced is the presence of phase mixing in the system, characterised by a non-zero frequency gradient at the equator and the tendency for vortices located off the equator to oscillate. This mechanism serves to enhance viscous dissipation in the fluid with the effect that the amplitude of any initial disturbance generated at onset is ultimately driven to zero. In this thesis we study a complex Ginzburg-Landau equation derived from the weakly nonlinear analysis of Harris, Bassom and Soward [D. Harris, A. P. Bassom, A. M. Soward, Global bifurcation to travelling waves with application to narrow gap spherical Couette flow, Physica D 177 (2003) p. 122-174] (referred to as HBS) to govern the amplitude modulation of Taylor vortex disturbances in the vicinity of the equator. This equation was developed in a regime that requires the angular velocities of the bounding spheres to be very close. When the spherical shells do not co-rotate, it has the remarkable property that the linearised form of the equation has no non-trivial neutral modes. Furthermore no steady solutions to the nonlinear equation have been found. Despite these challenges Bassom and Soward [A. P. Bassom, A. M. Soward, On finite amplitude subcritical instability in narrow-gap spherical Couette flow, J. Fluid Mech. 499 (2004) p. 277-314] (referred to as BS) identified solutions to the equation in the form of pulse-trains. These pulse-trains consist of oscillatory finite amplitude solutions expressed in terms of a single complex amplitude localised as a pulse about the origin. Each pulse oscillates at a frequency proportional to its distance from the equatorial plane and the whole pulse-train is modulated under an envelope and drifts away from the equator at a relatively slow speed. The survival of the pulse-train depends upon the nonlinear mutual-interaction of close neighbours; as the absence of steady solutions suggests, self-interaction is inadequate. Though we report new solutions to the HBS co-rotation model the primary focus in this work is the physically more interesting case when the shell velocities are far from close. More specifically we concentrate on the investigation of BS-style pulse-train solutions and, in the first part of this thesis, develop a generic framework for the identification and classification of pulse-train solutions. Motivated by relaxation oscillations identified by Cole [S. J. Cole, Nonlinear rapidly rotating spherical convection, Ph.D. thesis, University of Exeter (2004)] whilst studying the related problem of thermal convection in a rapidly rotating self-gravitating sphere, we extend the HBS equation in the second part of this work. A model system is developed which captures many of the essential features exhibited by Cole's, much more complicated, system of equations. We successfully reproduce relaxation oscillations in this extended HBS model and document the solution as it undergoes a series of interesting bifurcations.
8

Direct numerical simulation of turbulent flow in plane and cylindrical geometries

Komminaho, Jukka January 2000 (has links)
This thesis deals with numerical simulation of turbulentflows in geometrically simple cases. Both plane and cylindricalgeometries are used. The simplicity of the geometry allows theuse of spectral methods which yield a very high accuracy usingrelatively few grid points. A spectral method for planegeometries is implemented on a parallel computer. Thetransitional Reynolds number for plane Couette flow is verifiedto be about 360, in accordance with earlier findings. TurbulentCouette flow at twice the transitional Reynolds number isstudied and the findings of large scale structures in earlierstudies of Couette flow are substantiated. These largestructures are shown to be of limited extent and give anintegral length scale of six half channel heights, or abouteight times larger than in pressure-driven channel flow.Despite this, they contain only about 10 \% of the turbulentenergy. This is demonstrated by applying a very smallstabilising rotation, which almost eliminates the largestructures. A comparison of the Reynolds stress budget is madewith a boundary layer flow, and it is shown that the near-wallvalues in Couette flow are comparable with high-Reynolds numberboundary layer flow. A new spectrally accurate algorithm isdeveloped and implemented for cylindrical geometries andverified by studying the evolution of eigenmodes for both pipeflow and annular pipe flow. This algorithm is a generalisationof the algorithm used in the plane channel geometry. It usesFourier transforms in two homogeneous directions and Chebyshevpolynomials in the third, wall-normal, direction. TheNavier--Stokes equations are solved with a velocity-vorticityformulation, thereby avoiding the difficulty of solving for thepressure. The time advancement scheme used is a mixedimplicit/explicit second order scheme. The coupling between twovelocity components, arising from the cylindrical coordinates,is treated by introducing two new components and solving forthem, instead of the original velocity components. TheChebyshev integration method and the Chebyshev tau method isboth implemented and compared for the pipe flow case.
9

Stability results for viscous shock waves and plane Couette flow

Liefvendahl, Mattias January 2001 (has links)
No description available.
10

Stability of plane Couette flow and pipe Poiseuille flow

Åsén, Per-Olov January 2007 (has links)
This thesis concerns the stability of plane Couette flow and pipe Poiseuille flow in three space dimensions. The mathematical model for both flows is the incompressible Navier--Stokes equations. Both analytical and numerical techniques are used. We present new results for the resolvent corresponding to both flows. For plane Couette flow, analytical bounds on the resolvent have previously been derived in parts of the unstable half-plane. In the remaining part, only bounds based on numerical computations in an infinite parameter domain are available. Due to the need for truncation of this infinite parameter domain, these results are mathematically insufficient. We obtain a new analytical bound on the resolvent at s=0 in all but a compact subset of the parameter domain. This is done by deriving approximate solutions of the Orr--Sommerfeld equation and bounding the errors made by the approximations. In the remaining compact set, we use standard numerical techniques to obtain a bound. Hence, this part of the proof is not rigorous in the mathematical sense. In the thesis, we present a way of making also the numerical part of the proof rigorous. By using analytical techniques, we reduce the remaining compact subset of the parameter domain to a finite set of parameter values. In this set, we need to compute bounds on the solution of a boundary value problem. By using a validated numerical method, such bounds can be obtained. In the thesis, we investigate a validated numerical method for enclosing the solutions of boundary value problems. For pipe Poiseuille flow, only numerical bounds on the resolvent have previously been derived. We present analytical bounds in parts of the unstable half-plane. Also, we derive a bound on the resolvent for certain perturbations. Especially, the bound is valid for the perturbation which numerical computations indicate to be the perturbation which exhibits largest transient growth. The bound is valid in the entire unstable half-plane. We also investigate the stability of pipe Poiseuille flow by direct numerical simulations. Especially, we consider a disturbance which experiments have shown is efficient in triggering turbulence. The disturbance is in the form of blowing and suction in two small holes. Our results show the formation of hairpin vortices shortly after the disturbance. Initially, the hairpins form a localized packet of hairpins as they are advected downstream. After approximately $10$ pipe diameters from the disturbance origin, the flow becomes severely disordered. Our results show good agreement with the experimental results. In order to perform direct numerical simulations of disturbances which are highly localized in space, parallel computers must be used. Also, direct numerical simulations require the use of numerical methods of high order of accuracy. Many such methods have a global data dependency, making parallelization difficult. In this thesis, we also present the process of parallelizing a code for direct numerical simulations of pipe Poiseuille flow for a distributed memory computer. / QC 20100825

Page generated in 0.0364 seconds