• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improvements to detection efficiency and measurement accuracy in Coulomb Explosion Imaging experiments

Wales, Benjamin January 2011 (has links)
An algorithm for extracting event information from a Coulomb Explosion Imaging (CEI) position sensitive detector (PSD) is developed and compared with previously employed schemes. The PSD is calibrated using a newly designed grid overlay and validates the quality of the described algorithm. Precision calculations are performed to determine how best the CEI apparatus at The University of Waterloo can be improved. An algorithm for optimizing coincidence measurements of polyatomic molecules in CEI experiments is developed. Predictions of improved efficiency based on this algorithm are performed and compared with experiments using a triatomic molecule. Analysis of an OCS targeted CEI experiment using highly charged Argon ions to initiate ionization is performed. The resulting measurements are presented using a variety of visualization tools to reveal asynchronous and sequential fragmentation channels of OCS3+.
2

Fragmentation Dynamics of Triatomic Molecules in Femtosecond Laser Pulses Probed by Coulomb Explosion Imaging

Karimi, Reza 06 1900 (has links)
In this thesis we have utilized few-cycle pulses in the range 10-15s, to initiate CE to allow us to image the structure, dynamics, and kinetics of ionization and dissociation of triatomic molecules. We have made a series of measurements of this process for CO2 and N2O, by varying the laser pulse duration from 7 to 500 fs with intensity ranging from 2.5×1014 to 4×1015 (W/cm2), in order to identify the charge states and time scales involved. This is a new approach in CEI introducing a multi-dimensional aspect to the science of non-perturbative laser-molecule interaction. We refer to this approach as FEmtosecond Multi-PUlse Length Spectroscopy (FEMPULS). The use of a time and position sensitive detector allow us to observe all fragment ions in coincidence. By representing the final fragmentation with Dalitz and Newton plots, we have identified the underlying break up dynamics. Momentum conservation has been used to extract the correlated fragment ions which come from a single parent ion. This is achieved by considering that the total momentum of all correlated fragments must add up to zero. One of the main outcomes of our study is observation of charge resonance enhanced ionization (CREI) for triatomic molecules. In the case of CO2, we found that for the 4+ and higher charge states, 100 fs is the time scale required to reach the critical geometry RCO= 2.1Å and ӨOCO =163º (equilibrium CO2 geometry is RCO= 1:16Å and ӨOCO =172º. The CO23+ molecule, however, appears always to begin dissociation from closer than 1.7 Å indicating that dynamics on charge states lower than 3+ is not sufficient to initiate CREI. Finally, we make quantum ab initio calculations of ionization rates for CO2 and identify the electronic states responsible for CREI. Total kinetic energy (KER) has been measured for channels (1, 1, 1) to (2, 2, 2) and it was found that the (1, 1, 1) channel is not Coulombic, while (2, 2, 2) channel is very close to Coulombic (KER close to 90% of the coulombic potential). As another outcome of our study, for the case of N2O, we observed for the first time that there are two stepwise dissociation pathways for N2O3+: (1) N2O3+ → N++ NO2+ → N+ + N++ O+ and (2) N2O3+ → N22++O+ → N+ + N++ O+ as well as one for N2O4+ → N2++ NO2+ → N2+ + N++ O+. The N22+ stepwise channel is suppressed for longer pulse length, a phenomenon which we attribute to the influence which the structure of the 3+ potential has on the dissociating wave packet propagation. Finally, by observing the KER for each channel as a function of pulse duration, we show the increasing importance of CREI for channels higher than 3+.
3

Improvements to detection efficiency and measurement accuracy in Coulomb Explosion Imaging experiments

Wales, Benjamin January 2011 (has links)
An algorithm for extracting event information from a Coulomb Explosion Imaging (CEI) position sensitive detector (PSD) is developed and compared with previously employed schemes. The PSD is calibrated using a newly designed grid overlay and validates the quality of the described algorithm. Precision calculations are performed to determine how best the CEI apparatus at The University of Waterloo can be improved. An algorithm for optimizing coincidence measurements of polyatomic molecules in CEI experiments is developed. Predictions of improved efficiency based on this algorithm are performed and compared with experiments using a triatomic molecule. Analysis of an OCS targeted CEI experiment using highly charged Argon ions to initiate ionization is performed. The resulting measurements are presented using a variety of visualization tools to reveal asynchronous and sequential fragmentation channels of OCS3+.
4

Coulomb explosion imaging of polyatomic molecules after photoionization with X-rays and strong laser fields

Ablikim, Utuq January 1900 (has links)
Doctor of Philosophy / Department of Physics / Daniel Rolles / Imaging the structures of molecules, understanding the molecular dynamics in onization and dissociation processes and, most importantly, observing chemical reactions, i.e. the making and breaking of chemical bonds in real time, have become some of the most exciting topics in the atomic and molecular physics. The rapid advances of experimental tools such as synchrotron radiation light sources, free-electron lasers and continuing advances of tabletop femtosecond ultrashort lasers that provide laser pulses at a variety of wavelengths have opened new avenues for understanding the structure of matter and the dynamics of the chemical interactions. In addition, significant improvements in computational techniques and molecular dynamic simulations have provided complementary theoretical predictions on structures and chemical dynamics. The Coulomb explosion imaging method, which has been developed and applied in many studies in the last three decades, is a powerful way to study molecular structures. The method has mostly been applied to small diatomic molecules and to simple polyatomic molecules. In this thesis, Coulomb explosion imaging is applied to study the structure of isomers, molecules that have the same chemical formula but different chemical structures. Specifically, by taking inner-shell photoionization as well as strong-field ionization approaches to ionize and fragment the molecules and by using coincidence electron-ion-ion momentum imaging techniques to obtain the three-dimensional momentum of fragment ions, structures of isomers are distinguished by using the correlations among product ion momentum vectors. At first, the study aims to understand if the Coulomb explosion imaging of geometrical isomers can identify and separate cis and trans structures. Secondly, in order to extend the application of the Coulomb explosion imaging method to larger organic molecules to test the feasibility of the method for identifying structural isomers, photoionization studiesof 2,6- and 3,5-difluoroiodobenzene have been conducted. In addition, using the full three-dimensional kinematic information of multi-fold coincidence channels, breakup dynamics of both cis/trans geometric isomers and structural isomers, and in particular, sequential fragmentation dynamics of the difluoroiodobenzene isomers are studied. Furthermore, for each study, Coulomb explosion model simulations are conducted to complement the experimental results. The results of the Coulomb explosion imaging reseach in this thesis paves the way for future time-resolved Coulomb explosion imaging experiments aiming to understand the transient molecular dynamics such as photoinduced ring opening reactions and cis/trans isomerization processes in gas-phase molecules.
5

Studies of photoinduced molecular dynamics using a fast imaging sensor

Slater, Craig Stephen January 2013 (has links)
Few experimental techniques have found such a diverse range of applications as has ion imaging. The field of chemical dynamics is constantly advancing, and new applications of ion imaging are being realised with increasing frequency. This thesis is concerned with the application of a fast pixelated imaging sensor, the Pixel Imaging Mass Spectrometry (PImMS) camera, to ion imaging applications. The experimental possibilities of such a marriage are exceptionally broad in scope, and this thesis is concerned with the development of a selection of velocity-map imaging applications within the field of photoinduced molecular dynamics. The capabilities of the PImMS camera in three-dimensional and slice imaging applications are investigated, in which the product fragment Newton-sphere is temporally stretched along the time-of-flight axis, and time-resolved slices through the product fragment distribution are acquired. Through experimental results following the photodissociation of ethyl iodide (CH<sub>3</sub>CH<sub>2</sub>I) at around 230 nm, the PImMS camera is demonstrated to be capable of recording well-resolved time slices through the product fragment Newton-sphere in a single experiment, without the requirement to time-gate the acquisition. The various multi-hit capabilities of the device represent a unique and significant advantage over alternative technologies. The details of a new experiment that allows the simultaneous imaging of both photoelectrons and photoions on a single detector for each experimental acquisition cycle using pulsed ion extraction are presented. It is demonstrated that it is possible to maintain a high velocity resolution using this approach through the simultaneous imaging of the photoelectrons and photoions that result from the (3 + 2) resonantly enhanced multi-photon ionisation of Br atoms produced following the photodissociation of Br<sub>2</sub> at 446.41 nm. Pulsed ion extraction represents a substantial simplification in experimental design over conventional photoelectron-photoion coincidence (PEPICO) imaging spectrometers and is an important step towards performing coincidence experiments using a conventional ion imaging apparatus coupled with a fast imaging detector. The performance of the PImMS camera in this application is investigated, and a new method for the determination of the photofragment detection efficiencies based on a statistical fitting of the coincident photoelectron and photoion data is presented. The PImMS camera is applied to laser-induced Coulomb explosion imaging (CEI) of an axially chiral substituted biphenyl molecule. The multi-hit capabilities of the device allow the concurrent detection of individual 2D momentum images of all ionic fragments resulting from the Coulomb explosion of multiple molecules in each acquisition cycle. Correlations between the recoil directions of the fragment ions are determined through a covariance analysis. In combination with the ability to align the molecules in space prior to the Coulomb explosion event, the experimental results demonstrate that it is possible to extract extensive information pertaining to the parent molecular structure and fragmentation dynamics following strong field ionisation. Preliminary simulations of the Coulomb explosion dynamics suggest that such an approach may hold promise for determining elements of molecular structure on a femtosecond timescale, bringing the concept of the `molecular movie' closer to realisation. Finally, the PImMS camera is applied to the imaging of laser-induced torsional motion of axially chiral biphenyl molecules through femtosecond Coulomb explosion imaging. The target molecules are initially aligned in space using a nanosecond laser pulse, and torsional motion induced using a femtosecond 'kick' pulse. Instantaneous measurements of the dihedral angle of the molecules are inferred from the correlated F+ and Br+ ion trajectories following photoinitiated Coulomb explosion at various time delays after the initial kick pulse. The technique is extended to include a second kick pulse, in order to achieve either an increase in the amplitude of the oscillations or to damp the motion, representing a substantial degree of control of the system. Measurements out to long kick-probe delays (200 ps) reveal that the initially prepared torsional wave packet periodically dephases and rephases, in accordance with the predictions of recent theoretical work.

Page generated in 0.0884 seconds