• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact des fissures sur la sécheresse des sols argileux / Impact of cracks on clayey sol behavior

Tabbal, Diala 23 October 2013 (has links)
L’objectif de ce travail est d’étudier l’effet des fissures de dessiccation sur le comportement thermo-hydro-mécanique des sols argileux sensibles au phénomène de retrait. Ce travail inclut une étude expérimentale caractérisant l’influence des fissures sur le séchage des sols fins ainsi qu’une étude numérique comprenant une modélisation du processus dans le but de présenter l’impact des fissures sur le comportement thermo-hydrique d’un milieu argileux non saturé. L’étude expérimentale comprend des expériences de séchage réalisée en laboratoire sur des échantillons de sol intacts et fissurés où l’évolution de la teneur en eau a été suivie. Les processus liés la formation de nouvelles fissures ainsi qu’à la propagation des fissures sont aussi discutés.Une modélisation numérique du processus de fissuration des sols fins est ensuite présentée. Dans cette étude, une analyse détaillée de l’influence des fissures sur l’interaction sol-atmosphère est présentée. Un modèle numérique bidimensionnel de l’interaction sol- atmosphère tenant compte de la présence des fissures a été développé. Ce modèle prend en compte le couplage thermo-hydrique d’un milieu argileux non saturé. Dans cette étude, on a montré l’impact des fissures sur le développement de la succion, sur la variation de la teneur en eau ainsi que sur la valeur d’entrée de l’air. L’influence des fissures sur l’évolution du tassement du sol est également présentée. Cette étude propose aussi une approche simple pour la prise en compte des fissures dans l’interaction sol-atmosphère.Dans la dernière partie de ce travail, l’influence des fissures sur le comportement mécanique des sols fins est présentée et discutée. / The objective of this work is to study the effect of desiccation cracks on the thermo-hydro-mechanical behavior of clayey soils.The study includes an experimental study to characterize the influence of cracks on the drying process of clay samples and a numerical study in order to present the impact of cracks on the soil-atmosphere interaction.In the first phase of this study, an experimental work performed in the laboratory to characterize the influence of cracks on drying soil was conducted. Drying tests were conducted on samples of intact and cracked soil where the evolution of the water content and cracking due to drying were monitored. In the second phase of this study, the influence of cracks on the thermo-hydro-mechanical behaviour of clayey soil is presented. A two-dimensional numerical model of soil-atmosphere interaction has been developed considering the presence of cracks. The model takes into account the thermo- fluid coupling of an unsaturated clay soil.The model is used to simulate the evolution of evaporation during the drying process. It shows the impact of cracks on the suction development and water content evolution as well as the air entry value. This study also proposes a simple approach to the consideration of cracks in the soil-atmosphere interaction. In the last part of this work, the influence of cracks on the mechanical behaviour of fine soils is presented and discussed.
2

Étude multi-échelle du comportement thermo-hydro-mécanique des matériaux cimentaires : approche morphologique pour la prise en compte de la mésostructure

Le, Thi Thu Huong 04 May 2011 (has links) (PDF)
L'étude du comportement du béton en température est un problème majeur qui vise in fine à évaluer le niveau de sécurité des structures sous des sollicitations thermiques sévères, lors d'incendies par exemple. Pour cela, de nombreux modèles sont développés dans un cadre de couplage thermo-hydro-mécanique (THM), pour prendre en compte les différents processus physico-chimiques et mécaniques mobilisés par ces sollicitations et conditionnant la stabilité du matériau béton.Cependant, ces modélisations ne prennent souvent pas en compte explicitement la nature hétérogène du matériau. En effet, le béton est un matériau constitué d'inclusions noyées dans une matrice cimentaire pouvant être schématisée comme un milieu poreux ouvert partiellement saturé en eau. Les inclusions sont caractérisées par leurs natures minéralogiques, leurs morphologies et leurs tailles classées en fuseaux granulaires. Cette hétérogénéité introduit une complexité supplémentaire : la nécessité de prendre en compte la microstructure pour quantifier l'effet de l'incompatibilité (thermique, hydrique et mécanique) inclusion-matrice sur le comportement THM du béton. Ce travail constitue une première avancée dans ce sens. A ce titre, une modélisation élément fini multi-échelle tridimensionnelle (3D) est développée permettant d'affecter des comportements spécifiques à la matrice et aux inclusions. Pour la matrice, siège des transports de masse dans son réseau poreux connecté, une approche thermo-hydrique à trois fluides (eau, vapeur et air sec) est adoptée et est couplée à une loi de comportement poro-mécanique endommageable. Les inclusions (granulats) sont considérées hydriquement inertes, une approche thermo-mécanique avec endommagement est alors retenue.Une analyse, par simulations numériques, des effets de la nature minéralogique des granulats (calcaires ou silico-calcaires) de leurs distributions et de leurs morphologies a été menée sur des configurations 2D et 3D. Les effets étudiés ont notamment concerné l'influence de ces paramètres sur les fluctuations locales des champs de température, de pression de gaz et d'endommagement au regard de la dispersion des mesures expérimentales. L'analyse est limitée à l'échelle mésoscopique, celle où les granulats de taille caractéristique supérieure à 5 mm sont considérés, le reste (stable et pâte de ciment) étant une matrice homogène. Enfin, cette analyse a mis en évidence le besoin de mettre en œuvre une approche expérimentale cohérente avec une analyse mutli-échelle, à la fois pour la caractérisation des propriétés (thermiques, hydriques et mécaniques) de chaque constituant et pour l'étude des évolutions des champs lors des changements d'échelles. Un protocole expérimental a été définit et des premiers résultats d'essais sont présentés et analysés au travers de résultats obtenus dans la partie modélisation
3

Étude multi-échelle du comportement thermo-hydro-mécanique des matériaux cimentaires : approche morphologique pour la prise en compte de la mésostructure / On a morphological approach of the mesostructure for the multi-scale analysis of the thermo-hydro-mechanical behaviour of cementitious materials

Le, Thi Thu Huong 04 May 2011 (has links)
L'étude du comportement du béton en température est un problème majeur qui vise in fine à évaluer le niveau de sécurité des structures sous des sollicitations thermiques sévères, lors d'incendies par exemple. Pour cela, de nombreux modèles sont développés dans un cadre de couplage thermo-hydro-mécanique (THM), pour prendre en compte les différents processus physico-chimiques et mécaniques mobilisés par ces sollicitations et conditionnant la stabilité du matériau béton.Cependant, ces modélisations ne prennent souvent pas en compte explicitement la nature hétérogène du matériau. En effet, le béton est un matériau constitué d'inclusions noyées dans une matrice cimentaire pouvant être schématisée comme un milieu poreux ouvert partiellement saturé en eau. Les inclusions sont caractérisées par leurs natures minéralogiques, leurs morphologies et leurs tailles classées en fuseaux granulaires. Cette hétérogénéité introduit une complexité supplémentaire : la nécessité de prendre en compte la microstructure pour quantifier l'effet de l'incompatibilité (thermique, hydrique et mécanique) inclusion-matrice sur le comportement THM du béton. Ce travail constitue une première avancée dans ce sens. A ce titre, une modélisation élément fini multi-échelle tridimensionnelle (3D) est développée permettant d'affecter des comportements spécifiques à la matrice et aux inclusions. Pour la matrice, siège des transports de masse dans son réseau poreux connecté, une approche thermo-hydrique à trois fluides (eau, vapeur et air sec) est adoptée et est couplée à une loi de comportement poro-mécanique endommageable. Les inclusions (granulats) sont considérées hydriquement inertes, une approche thermo-mécanique avec endommagement est alors retenue.Une analyse, par simulations numériques, des effets de la nature minéralogique des granulats (calcaires ou silico-calcaires) de leurs distributions et de leurs morphologies a été menée sur des configurations 2D et 3D. Les effets étudiés ont notamment concerné l'influence de ces paramètres sur les fluctuations locales des champs de température, de pression de gaz et d'endommagement au regard de la dispersion des mesures expérimentales. L'analyse est limitée à l'échelle mésoscopique, celle où les granulats de taille caractéristique supérieure à 5 mm sont considérés, le reste (stable et pâte de ciment) étant une matrice homogène. Enfin, cette analyse a mis en évidence le besoin de mettre en œuvre une approche expérimentale cohérente avec une analyse mutli-échelle, à la fois pour la caractérisation des propriétés (thermiques, hydriques et mécaniques) de chaque constituant et pour l'étude des évolutions des champs lors des changements d'échelles. Un protocole expérimental a été définit et des premiers résultats d'essais sont présentés et analysés au travers de résultats obtenus dans la partie modélisation / The investigation of the behavior of heated concrete is a major research topic which concerns the assessment of safety level of structures when exposed to high temperatures, for instance during a fire. For this purpose, several modeling approaches were developed within thermo-hydro-mechanical (THM) frameworks in order to take into account the involved physic-chemical and mechanical processes that affect stability of heated concrete. However, existing models often do note account explicitly for the heterogeneity of the material : concrete is composite material that may be schematized as an assembly of inclusions (aggregates) embedded in a cementitious matrix (cement paste). This latter may be described as a partially saturated open porous medium. The aggregates are characterized by their mineralogical nature together with their morphology and size distribution. The material heterogeneity bring an additional complexity : the need to take into account the microstructure in order to quantify the effect of matrix-inclusion thermal, hygral and mechanical incompatibilities on the THM behavior of concrete. This work is a first step in this direction. For this purpose, a three-dimensional (3D) multi-scale finite element model is developed. It allows affecting specific behaviors to matrix and inclusions. For the former, where mass transports occur within the connected porous network, a three-fluids approach (liquid water, vapor and dry air) is adopted and is coupled to a poro-mechanical damage based approach. For inclusions (aggregates) no hygral component arises a pure thermo-mechanical model is considered. The developed model is then used to investigate, either by 2D or 3D numerical simulations, effects of mineralogical nature, morphology and distribution of aggregates. Studied effects have mainly concerned the influence of these parameters on local fluctuations of simulated temperature, gas pressure and damage fields with regard to experimentally observed dispersion. The analysis is here limited to the mesoscale, at which only aggregates with a characteristic size above 5 mm are meshed while the remaining inclusions together with the cement paste are considered to be a homogeneous matrix. Finally, the numerical analysis carries out the need to perform an experimental campaign that is consistent with a multi-scale approach of the THM behavior of concrete : an experimental campaign that allows to identify thermal, hygral and mechanical properties of each concrete constituent and that permit to assess evolution of fields during upscalling. An experimental protocol is then elaborated for this purpose and some obtained results are presented and analyzed with regard to results obtained in the modeling part

Page generated in 0.0579 seconds