• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Déstabilisation gravitaire d'un matériau granulaire immergé

Bonnet, Felix 30 October 2012 (has links) (PDF)
La stabilité gravitaire des ouvrages hydrauliques (digues fluviales, barrage en remblai, ...) est un problème complexifié par la présence d'infiltration d'eau au sein même de l'ouvrage et de ses fondations. Le territoire national compte près de 10000 km de digues, d'où un enjeu important en terme de risque d'inondation. Les déstabilisations gravitaires observées sur les ouvrages hydrauliques se distinguent par leur brièveté et par leur faible emprise spatiale. L'objectif de ce travail de thèse est d'étudier spécifiquement ces instabilités brèves et de faible déplacement cumulé le long de la pente dans le cas de matériaux granulaires saturés. Dans un premier temps, une campagne expérimentale a été effectuée sur la base d'un protocole de chargement progressif dans lequel un échantillon de sol est lentement incliné jusqu'à obtenir une déstabilisation massive. Il en ressort une phénoménologie complexe composée d'un nombre de précurseurs d'avalanche dépendant de la fraction volumique de l'échantillon. Une forte influence de la fraction volumique du sol sur le seuil de stabilité est également mise en avant. Une deuxième campagne expérimentale basée sur un protocole d'effondrement contrôlé, à inclinaison imposée, a été menée dans le but d'amplifier la cinématique de déstabilisation observée en chargement progressif. Mis à part les échantillons les plus denses qui produisent de simples avalanches de surface, on observe dans les autres cas un ou plusieurs événements successifs, d'allure circulaire, mobilisant des profondeurs très importantes contrairement aux avalanches de surface.. Outre l'inclinaison, on voit bien que, là encore, la fraction volumique est un paramètre clé dans le contrôle de la cinématique de déstabilisation. Des essais préliminaires laissent cependant entendre que, au-delà de la fraction volumique, c'est la microstructure qui semble être le vrai paramètre de contrôle à travers notamment la forme des grains et leur enchevêtrement.
2

Etude du comportement granulaire en transport par charriage basée sur un modèle Eulérien-Lagrangien / Investigation of granular behavior in bedload transport using an Eulerian-Lagrangian model

Maurin, Raphaël 11 December 2015 (has links)
Turbulent bedload transport represents the main contribution to the riverbed morphological evolution, and associates the non-trivial collective granular behavior with a turbulent fluid flow. Therefore, its description is both a scientific challenge and a societal issue. The present numerical approach focuses on the granular phase characterization, and considers idealized steady uniform bedload transport, with monodisperse spherical beads and a unidirectional fluid flow. This simplified configuration allows to study the underlying physical mechanisms.A minimal coupled numerical model is proposed, associating a three dimensional discrete element method with a one-dimensional volume-averaged fluid momentum balance resolution. The model is compared with classical experimental results of dimensionless sediment transport rate as a function of the Shields number. The comparison is extended to granular depth profiles of solid volume fraction, solid velocity and sediment transport rate density in quasi-2D bedload transport configurations. Parameter sensitivity analysis evidenced the importance of the fluid-particle phase coupling, and showed a robust agreement of the model with the experiments. The validated model is further used to analyze the granular depth structure in bedload transport. Varying the channel inclination angle and the specific density, it is shown that the classical Shields number and dimensionless sediment transport rate formulations do not take appropriately into account the effects of these two parameters. Analyzing the solid depth profiles and the continuous two-phase flow equations, the neglected fluid flow inside the granular bed is identified as the missing contribution. Its importance is enhanced near the transition to debris flow. A rescaling of the Shields number is proposed and is shown to make all the data collapse onto a master curve when considering the dimensionless sediment transport rate as a function of the modified Shields number. Lastly, the bedload transport granular rheology is characterized by computing locally the stress tensor as a function of the depth. The lowermost part is shown to follow a creeping regime and exhibits signature of non-local effects. The dense granular flow on the top of it, is well described by the mu(I) rheology and is observed to persist up to unexpectedly high inertial numbers. It is characterized by the co-existence of frictional and collisional contributions. The transition from dense to dilute granular flow is controlled by the Shields number, the slope and the specific density. Saltation is observed in the uppermost granular layer. These findings improve the understanding of bedload transport granular mechanisms and challenge the existing granular rheologies. / Turbulent bedload transport represents the main contribution to the riverbed morphological evolution, and associates the non-trivial collective granular behavior with a turbulent fluid flow. Therefore, its description is both a scientific challenge and a societal issue. The present numerical approach focuses on the granular phase characterization, and considers idealized steady uniform bedload transport, with monodisperse spherical beads and a unidirectional fluid flow. This simplified configuration allows to study the underlying physical mechanisms.A minimal coupled numerical model is proposed, associating a three dimensional discrete element method with a one-dimensional volume-averaged fluid momentum balance resolution. The model is compared with classical experimental results of dimensionless sediment transport rate as a function of the Shields number. The comparison is extended to granular depth profiles of solid volume fraction, solid velocity and sediment transport rate density in quasi-2D bedload transport configurations. Parameter sensitivity analysis evidenced the importance of the fluid-particle phase coupling, and showed a robust agreement of the model with the experiments. The validated model is further used to analyze the granular depth structure in bedload transport. Varying the channel inclination angle and the specific density, it is shown that the classical Shields number and dimensionless sediment transport rate formulations do not take appropriately into account the effects of these two parameters. Analyzing the solid depth profiles and the continuous two-phase flow equations, the neglected fluid flow inside the granular bed is identified as the missing contribution. Its importance is enhanced near the transition to debris flow. A rescaling of the Shields number is proposed and is shown to make all the data collapse onto a master curve when considering the dimensionless sediment transport rate as a function of the modified Shields number. Lastly, the bedload transport granular rheology is characterized by computing locally the stress tensor as a function of the depth. The lowermost part is shown to follow a creeping regime and exhibits signature of non-local effects. The dense granular flow on the top of it, is well described by the mu(I) rheology and is observed to persist up to unexpectedly high inertial numbers. It is characterized by the co-existence of frictional and collisional contributions. The transition from dense to dilute granular flow is controlled by the Shields number, the slope and the specific density. Saltation is observed in the uppermost granular layer. These findings improve the understanding of bedload transport granular mechanisms and challenge the existing granular rheologies.
3

Déstabilisation gravitaire d'un matériau granulaire immergé / saturated granular soil instability

Bonnet, Félix 30 October 2012 (has links)
La stabilité gravitaire des ouvrages hydrauliques (digues fluviales, barrage en remblai, ...) est un problème complexifié par la présence d'infiltration d'eau au sein même de l'ouvrage et de ses fondations. Le territoire national compte près de 10000 km de digues, d'où un enjeu important en terme de risque d'inondation. Les déstabilisations gravitaires observées sur les ouvrages hydrauliques se distinguent par leur brièveté et par leur faible emprise spatiale. L'objectif de ce travail de thèse est d'étudier spécifiquement ces instabilités brèves et de faible déplacement cumulé le long de la pente dans le cas de matériaux granulaires saturés. Dans un premier temps, une campagne expérimentale a été effectuée sur la base d'un protocole de chargement progressif dans lequel un échantillon de sol est lentement incliné jusqu'à obtenir une déstabilisation massive. Il en ressort une phénoménologie complexe composée d'un nombre de précurseurs d'avalanche dépendant de la fraction volumique de l'échantillon. Une forte influence de la fraction volumique du sol sur le seuil de stabilité est également mise en avant. Une deuxième campagne expérimentale basée sur un protocole d'effondrement contrôlé, à inclinaison imposée, a été menée dans le but d'amplifier la cinématique de déstabilisation observée en chargement progressif. Mis à part les échantillons les plus denses qui produisent de simples avalanches de surface, on observe dans les autres cas un ou plusieurs événements successifs, d'allure circulaire, mobilisant des profondeurs très importantes contrairement aux avalanches de surface.. Outre l'inclinaison, on voit bien que, là encore, la fraction volumique est un paramètre clé dans le contrôle de la cinématique de déstabilisation. Des essais préliminaires laissent cependant entendre que, au-delà de la fraction volumique, c'est la microstructure qui semble être le vrai paramètre de contrôle à travers notamment la forme des grains et leur enchevêtrement. / Gravitational stability of hydraulic structures (river dykes, embankment dam,...) is a problem complicated by the presence of water infiltration within the structure and its foundations. Our country has about 10,000 km of dikes and gravitational failure is a major challenge in terms of flood risk. In hydraulic structures, these destabilizations are characterized by their brevity and their small spatial extent. The objective of this thesis is to study specifically this type of brief instabilities in the case of a saturated granular material. A first series of experiments was carried out on the basis of a progressive loading protocol in which a soil sample is tilted slowly until a massive destabilization is triggered. It shows a phenomenology complex consisting of a number of precursory events prior final avalanching, dependent on the solid volume fraction of the sample. A strong impact of the solid volume fraction of the soil on the stability threshold is also highlighted. A second series of experiments based on a protocol of collapse controlled at imposed slope was conducted to amplify the kinematics of destabilization observed by progressive loading. Apart from the denser samples that produce simple surface avalanches, one or more successive events are observed in other cases. Unlike surface avalanches, these events mobilize grains much deeper, in an almost semi-circular area. In addition to slope angle, solid volume fraction is once again a key parameter in controlling the kinematics of destabilization. Preliminary tests suggest, however, that, beyond solid volume fraction, microstructure appears to be the true control parameter, particularly through grain shape and texture.

Page generated in 0.0545 seconds