Spelling suggestions: "subject:"coupled flow anda transport"" "subject:"coupled flow ando transport""
1 |
Discontinuous Galerkin Methods for Parabolic Partial Differential Equations with Random Input DataLiu, Kun 16 September 2013 (has links)
This thesis discusses and develops one approach to solve parabolic partial differential equations with random input data. The stochastic problem is firstly transformed into a parametrized one by using finite dimensional noise assumption and the truncated Karhunen-Loeve expansion. The approach, Monte Carlo discontinuous Galerkin (MCDG) method, randomly generates $M$ realizations of uncertain coefficients and approximates the expected value of the solution by averaging M numerical solutions. This approach is applied to two numerical examples. The first example is a two-dimensional parabolic partial differential equation with random convection term and the second example is a benchmark problem coupling flow and transport equations. I first apply polynomial kernel principal component analysis of second order to generate M realizations of random permeability fields. They are used to obtain M realizations of random convection term computed from solving the flow equation. Using this approach, I solve the transport equation M times corresponding to M velocity realizations. The MCDG solution spreads toward the whole domain from the initial location and the contaminant does not leave the initial location completely as time elapses. The results show that MCDG solution is realistic, because it takes the uncertainty in velocity fields into consideration. Besides, in order to correct overshoot and undershoot solutions caused by the high level of oscillation in random velocity realizations, I solve the transport equation on meshes of finer resolution than of the permeability, and use a slope limiter as well as lower and upper bound constraints to address this difficulty. Finally, future work is proposed.
|
2 |
Coupled flow systems, adjoint techniques and uncertainty quantificationGarg, Vikram Vinod, 1985- 25 October 2012 (has links)
Coupled systems are ubiquitous in modern engineering and science. Such systems can encompass fluid dynamics, structural mechanics, chemical species transport and electrostatic effects among other components, all of which can be coupled in many different ways. In addition, such models are usually multiscale, making their numerical simulation challenging, and necessitating the use of adaptive modeling techniques. The multiscale, multiphysics models of electrosomotic flow (EOF) constitute a particularly challenging coupled flow system. A special feature of such models is that the coupling between the electric physics and hydrodynamics is via the boundary. Numerical simulations of coupled systems are typically targeted towards specific Quantities of Interest (QoIs). Adjoint-based approaches offer the possibility of QoI targeted adaptive mesh refinement and efficient parameter sensitivity analysis. The formulation of appropriate adjoint problems for EOF models is particularly challenging, due to the coupling of physics via the boundary as opposed to the interior of the domain. The well-posedness of the adjoint problem for such models is also non-trivial. One contribution of this dissertation is the derivation of an appropriate adjoint problem for slip EOF models, and the development of penalty-based, adjoint-consistent variational formulations of these models. We demonstrate the use of these formulations in the simulation of EOF flows in straight and T-shaped microchannels, in conjunction with goal-oriented mesh refinement and adjoint sensitivity analysis. Complex computational models may exhibit uncertain behavior due to various reasons, ranging from uncertainty in experimentally measured model parameters to imperfections in device geometry. The last decade has seen a growing interest in the field of Uncertainty Quantification (UQ), which seeks to determine the effect of input uncertainties on the system QoIs. Monte Carlo methods remain a popular computational approach for UQ due to their ease of use and "embarassingly parallel" nature. However, a major drawback of such methods is their slow convergence rate. The second contribution of this work is the introduction of a new Monte Carlo method which utilizes local sensitivity information to build accurate surrogate models. This new method, called the Local Sensitivity Derivative Enhanced Monte Carlo (LSDEMC) method can converge at a faster rate than plain Monte Carlo, especially for problems with a low to moderate number of uncertain parameters. Adjoint-based sensitivity analysis methods enable the computation of sensitivity derivatives at virtually no extra cost after the forward solve. Thus, the LSDEMC method, in conjuction with adjoint sensitivity derivative techniques can offer a robust and efficient alternative for UQ of complex systems. The efficiency of Monte Carlo methods can be further enhanced by using stratified sampling schemes such as Latin Hypercube Sampling (LHS). However, the non-incremental nature of LHS has been identified as one of the main obstacles in its application to certain classes of complex physical systems. Current incremental LHS strategies restrict the user to at least doubling the size of an existing LHS set to retain the convergence properties of LHS. The third contribution of this research is the development of a new Hierachical LHS algorithm, that creates designs which can be used to perform LHS studies in a more flexibly incremental setting, taking a step towards adaptive LHS methods. / text
|
Page generated in 0.113 seconds