• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High-Gain On-Chip Antenna Design on Silicon Layer with Aperture Excitation for Terahertz Applications

Alibakhshikenari, M., Virdee, B.S., Khalily, M., See, C.H., Abd-Alhameed, Raed, Falcone, F., Denidni, T.A., Limiti, E. 05 May 2021 (has links)
No / This letter investigates the feasibility of designing a high gain on-chip antenna on silicon technology for subterahertz applications over a wide-frequency range. High gain is achieved by exciting the antenna using an aperture fed mechanism to couple electromagnetics energy from a metal slot line, which is sandwiched between the silicon and polycarbonate substrates, to a 15-element array comprising circular and rectangular radiation patches fabricated on the top surface of the polycarbonate layer. An open ended microstrip line, which is orthogonal to the metal slot-line, is implemented on the underside of the silicon substrate. When the open ended microstrip line is excited it couples the signal to the metal slot-line which is subsequently coupled and radiated by the patch array. Measured results show the proposed on-chip antenna exhibits a reflection coefficient of less than-10 dB across 0.290-0.316 THz with a highest gain and radiation efficiency of 11.71 dBi and 70.8%, respectively, occurred at 0.3 THz. The antenna has a narrow stopband between 0.292 and 0.294 THz. The physical size of the presented subterahertz on-chip antenna is 20 × 3.5 × 0.126 mm3.

Page generated in 0.0754 seconds