• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards brain-scale modelling of the human cerebral blood flow : hybrid approach and high performance computing

Peyrounette, Myriam 25 October 2017 (has links) (PDF)
The brain microcirculation plays a key role in cerebral physiology and neuronal activation. In the case of degenerative diseases such as Alzheimer’s, severe deterioration of the microvascular networks (e.g. vascular occlusions) limit blood flow, thus oxygen and nutrients supply, to the cortex, eventually resulting in neurons death. In addition to functional neuroimaging, modelling is a valuable tool to investigate the impact of structural variations of the microvasculature on blood flow and mass transfers. In the brain microcirculation, the capillary bed contains the smallest vessels (1-10 μm in diameter) and presents a mesh-like structure embedded in the cerebral tissue. This is the main place of molecular exchange between blood and neurons. The capillary bed is fed and drained by larger arteriolar and venular tree-like vessels (10-100 μm in diameter). For the last decades, standard network approaches have significantly advanced our understanding of blood flow, mass transport and regulation mechanisms in the human brain microcirculation. By averaging flow equations over the vascular cross-sections, such approaches yield a one-dimensional model that involves much fewer variables compared to a full three-dimensional resolution of the flow. However, because of the high density of capillaries, such approaches are still computationally limited to relatively small volumes (<100 mm3). This constraint prevents applications at clinically relevant scales, since standard imaging techniques only yield much larger volumes (∼100 cm3), with a resolution of 1-10 mm3. To get around this computational cost, we present a hybrid approach for blood flow modelling where the capillaries are replaced by a continuous medium. This substitution makes sense since the capillary bed is dense and space-filling over a cut-off length of ∼50 μm. In this continuum, blood flow is characterized by effective properties (e.g. permeability) at the scale of a much larger representative volume. Furthermore, the domain is discretized on a coarse grid using the finite volume method, inducing an important computational gain. The arteriolar and venular trees cannot be homogenized because of their quasi-fractal structure, thus the network approach is used to model blood flow in the larger vessels. The main difficulty of the hybrid approach is to develop a proper coupling model at the points where arteriolar or venular vessels are connected to the continuum. Indeed, high pressure gradients build up at capillary-scale in the vicinity of the coupling points, and must be properly described at the continuum-scale. Such multiscale coupling has never been discussed in the context of brain microcirculation. Taking inspiration from the Peaceman “well model” developed for petroleum engineering, our coupling model relies on to use analytical solutions of the pressure field in the neighbourhood of the coupling points. The resulting equations yield a single linear system to solve for both the network part and the continuum (strong coupling). The accuracy of the hybrid model is evaluated by comparison with a classical network approach, for both very simple synthetic architectures involving no more than two couplings, and more complex ones, with anatomical arteriolar and venular trees displaying a large number of couplings. We show that the present approach is very accurate, since relative pressure errors are lower than 6 %. This lays the goundwork for introducing additional levels of complexity in the future (e.g. non uniform hematocrit). In the perspective of large-scale simulations and extension to mass transport, the hybrid approach has been implemented in a C++ code designed for High Performance Computing. It has been fully parallelized using Message Passing Interface standards and specialized libraries (e.g. PETSc). Since the present work is part of a larger project involving several collaborators, special care has been taken in developing efficient coding strategies.
2

Prediction of long-term creep behavior of epoxy adhesives for structural applications

Feng, Chih-Wei 01 November 2005 (has links)
The mechanical property of polymeric materials changes over time, especially when they are subjected to long-term loading scenarios. To predict the time-dependent viscoelastic behaviors of epoxy-based adhesive materials, it is imperative that reliable accelerated tests be developed to determine their long-term performances under different exposed environments. A neat epoxy resin system and a commercial structural adhesive system for bonding aluminum substrates are investigated. A series of moisture diffusion tests have been performed for more than three months in order to understand the influence of the absorbed moisture on creep behavior. The material properties, such as elastic modulus and glass transition temperature, are also studied under different environmental conditions. The time-temperature superposition method produces a master curve allowing the long-term creep compliance to be estimated. The physics-based Coupling model is found to fit well the long-term creep master curve. The equivalence of the temperature and moisture effect on the creep compliance of the epoxy adhesives is also addressed. Finally, a methodology for predicting the long-term creep behavior of epoxy adhesives is proposed.
3

Prediction of long-term creep behavior of epoxy adhesives for structural applications

Feng, Chih-Wei 01 November 2005 (has links)
The mechanical property of polymeric materials changes over time, especially when they are subjected to long-term loading scenarios. To predict the time-dependent viscoelastic behaviors of epoxy-based adhesive materials, it is imperative that reliable accelerated tests be developed to determine their long-term performances under different exposed environments. A neat epoxy resin system and a commercial structural adhesive system for bonding aluminum substrates are investigated. A series of moisture diffusion tests have been performed for more than three months in order to understand the influence of the absorbed moisture on creep behavior. The material properties, such as elastic modulus and glass transition temperature, are also studied under different environmental conditions. The time-temperature superposition method produces a master curve allowing the long-term creep compliance to be estimated. The physics-based Coupling model is found to fit well the long-term creep master curve. The equivalence of the temperature and moisture effect on the creep compliance of the epoxy adhesives is also addressed. Finally, a methodology for predicting the long-term creep behavior of epoxy adhesives is proposed.
4

Core excitation in the structure and breakup of heavy beryllium isotopes

Tarutina, Tatiana January 2001 (has links)
The 14Be nucleus is a good candidate for having a halo structure. When a three- body model is used to calculate the properties of this nucleus, it relies on a knowledge of the potentials involved and hence on the structure of the underlying two-body subsystem 13Be. Previuosly published calculations showed that, in order to describe 13Be and 14Be simultaneously, 13Be had to be either bound, or have a p-shell ground state, which is not consistent with the experimental data. In this thesis 13Be and 14Be are described as one or two neutrons outside a deformed 12Be core. The idea of the method is that deformation of the core couples the neutron motion with core excitations. The core is treated as a rigid rotor here, and for the neutron-core interaction we used a deformed Woods-Saxon potential. We explore the potential parameters compatible with the known properties of 12Be, 13Be and 14Be. The three-body model for 14Be used a hyperspherical expansion including core degrees of freedom. Compared to the previous works, we find that both 14Be and 13Be are described simultaneously if the 12Be core has large positive quadrupole deformation. The resulting three-body model wave function was used in calculations of reaction observables. The reaction cross section of 14Be on a carbon target at 850 MeV/A was calculated in a four-body Glauber model, after the formalism was extended to include core degrees of freedom. The calculated reaction cross section agrees with the experiment. One-neutron knockout reactions of the Borromean nuclei 6He, 11Li and 14Be are discussed. The integrated cross sections for stripping and diffraction processes are calculated in the four-body Glauber model including core excited components in the wave function for 14Be. The neutron-core relative energy distributions within 5He, 10Li and 13Be following one-neutron removal, are calculated by a spectator model in the eikonal limit. The integrated cross sections and energy distributions for 6He are in agreement with the experiment. The results for 11Li and 14Be breakup demonstrated that the further investigation of the reaction model is needed.
5

Overview of Redundancy Analysis and Partial Linear Squares and Their Extension to the Frequency Domain

Liu, Jinyi Jr 30 April 2011 (has links)
Applied statisticians are often faced with the problem of dealing with high dimensional data sets when attempting to describe the variability of a single set of variables, or trying to predict the variation of one set of variables from another. In this study, two data reduction methods are described: Redundancy Analysis and Partial Least Squares. A hybrid approach developed by Bougeard et al., (2007) and called Continuum Redundancy-Partial Least Squares, is described. All three methods are extended to the frequency domain in order to allow the lower dimensional subspace used to describe the variability to change with frequency. To illustrate and compare the three methods, and their frequency dependent generalizations, an idealized coupled atmosphere-ocean model is introduced in state space form. This model provides explicit expressions for the covariance and cross spectral matrices required by the various methods; this allows the strengths and weaknesses of the methods to be identified.
6

Towards brain-scale modelling of the human cerebral blood flow : hybrid approach and high performance computing / Vers une modélisation de l’écoulement sanguin cérébral humain à l’échelle du cerveau : approche hybride et calcul haute performance

Peyrounette, Myriam 25 October 2017 (has links)
La microcirculation cérébrale joue un rôle clé dans la physiologie cérébrale. Lors de maladies dégénératives comme celle d’Alzheimer, la détérioration des réseaux microvasculaires (e.g. occlusions et baisse de densité vasculaires) limite l’afflux sanguin vers le cortex. La réduction associée de l’apport en oxygène et nutriments risque de provoquer la mort de neurones. En complément des techniques d’imagerie médicale, la modélisation est un outil précieux pour comprendre l’impact de telles variations structurelles sur l’écoulement sanguin et les transferts de masse. Dans la microcirculation cérébrale, le lit capillaire contient les plus petits vaisseaux (diamètre de 1-10 μm) et présente une structure maillée, au sein du tissu cérébral. C’est le lieu principal des échanges moléculaires entre le sang et les neurones. Le lit capillaire est alimenté et drainé par les arbres artériolaires et veinulaires (diamètre de 10-100 μm). Depuis quelques décennies, les approches “réseau” ont significativement amélioré notre compréhension de l’écoulement sanguin, du transport de masse et des mécanismes de régulation dans la microcirculation cérébrale humaine. Cependant, d’un point de vue numérique, la densité des capillaires limite ces approches à des volumes relativement petits (<100 mm3). Cette contrainte empêche leur application à des échelles cliniques, puisque les techniques d’imagerie médicale permettent d’acquérir des volumes bien plus importants (∼100 cm3), avec une résolution de 1-10 mm. Pour réduire ce coût numérique, nous présentons une approche hybride pour la modélisation de l’écoulement dans laquelle les capillaires sont remplacés par un milieu continu. Cette substitution a du sens puisque le lit capillaire est dense et homogène à partir d’une longueur de coupure de ∼50 μm. Dans ce continuum, l’écoulement est caractérisé par des propriétés effectives (e.g. perméabilité) à l’échelle d’un volume représentatif plus grand. De plus, le continuum est discrétisé par la méthode des volumes finis sur un maillage grossier, ce qui induit un gain numérique important. Les arbres artério- et veinulaires ne peuvent être homogénéisés à cause de leur structure quasi-fractale. Nous appliquons donc une approche “réseau” standard dans les vaisseaux les plus larges. La principale difficulté de l’approche hybride est de développer un modèle de couplage aux points où les vaisseaux artério- et veinulaires sont connectés au continuum. En effet, de forts gradients de pression apparaissent à proximité de ces points, et doivent être homogénéisés proprement à l’échelle du continuum. Ce genre de couplage multi-échelle n’a jamais été introduit dans le contexte de la microcirculation cérébrale. Nous nous inspirons ici du "modèle de puits" développé par Peaceman pour l’ingénierie pétrolière, en utilisant des solutions analytiques du champ des pressions dans le voisinage des points de couplage. Les équations obtenues forment un unique système linéaire à résoudre pour l’ensemble du domaine d’étude. Nous validons l’approche hybride par comparaison avec une approche “réseau” classique, pour des architectures synthétiques simples qui n’impliquent qu’un ou deux couplages, et pour des structures plus complexes qui impliquent des arbres artério- et veinulaires anatomiques avec un grand nombre de couplages. Nous montrons que cette approche est fiable, puisque les erreurs relatives en pression sont faibles (<6 %). Cela ouvre la voie à une complexification du modèle (e.g. hématocrite non uniforme). Dans une perspective de simulations à grande échelle et d’extension au transport de masse, l’approche hybride a été implémentée dans un code C++ conçu pour le calcul haute performance. Ce code a été entièrement parallélisé en utilisant les standards MPI et des librairies spécialisées (e.g. PETSc). Ce travail faisant partie d’un projet plus large impliquant plusieurs collaborateurs, une attention particulière a été portée à l’établissement de stratégies d’implémentation efficaces. / The brain microcirculation plays a key role in cerebral physiology and neuronal activation. In the case of degenerative diseases such as Alzheimer’s, severe deterioration of the microvascular networks (e.g. vascular occlusions) limit blood flow, thus oxygen and nutrients supply, to the cortex, eventually resulting in neurons death. In addition to functional neuroimaging, modelling is a valuable tool to investigate the impact of structural variations of the microvasculature on blood flow and mass transfers. In the brain microcirculation, the capillary bed contains the smallest vessels (1-10 μm in diameter) and presents a mesh-like structure embedded in the cerebral tissue. This is the main place of molecular exchange between blood and neurons. The capillary bed is fed and drained by larger arteriolar and venular tree-like vessels (10-100 μm in diameter). For the last decades, standard network approaches have significantly advanced our understanding of blood flow, mass transport and regulation mechanisms in the human brain microcirculation. By averaging flow equations over the vascular cross-sections, such approaches yield a one-dimensional model that involves much fewer variables compared to a full three-dimensional resolution of the flow. However, because of the high density of capillaries, such approaches are still computationally limited to relatively small volumes (<100 mm3). This constraint prevents applications at clinically relevant scales, since standard imaging techniques only yield much larger volumes (∼100 cm3), with a resolution of 1-10 mm3. To get around this computational cost, we present a hybrid approach for blood flow modelling where the capillaries are replaced by a continuous medium. This substitution makes sense since the capillary bed is dense and space-filling over a cut-off length of ∼50 μm. In this continuum, blood flow is characterized by effective properties (e.g. permeability) at the scale of a much larger representative volume. Furthermore, the domain is discretized on a coarse grid using the finite volume method, inducing an important computational gain. The arteriolar and venular trees cannot be homogenized because of their quasi-fractal structure, thus the network approach is used to model blood flow in the larger vessels. The main difficulty of the hybrid approach is to develop a proper coupling model at the points where arteriolar or venular vessels are connected to the continuum. Indeed, high pressure gradients build up at capillary-scale in the vicinity of the coupling points, and must be properly described at the continuum-scale. Such multiscale coupling has never been discussed in the context of brain microcirculation. Taking inspiration from the Peaceman “well model” developed for petroleum engineering, our coupling model relies on to use analytical solutions of the pressure field in the neighbourhood of the coupling points. The resulting equations yield a single linear system to solve for both the network part and the continuum (strong coupling). The accuracy of the hybrid model is evaluated by comparison with a classical network approach, for both very simple synthetic architectures involving no more than two couplings, and more complex ones, with anatomical arteriolar and venular trees displaying a large number of couplings. We show that the present approach is very accurate, since relative pressure errors are lower than 6 %. This lays the goundwork for introducing additional levels of complexity in the future (e.g. non uniform hematocrit). In the perspective of large-scale simulations and extension to mass transport, the hybrid approach has been implemented in a C++ code designed for High Performance Computing. It has been fully parallelized using Message Passing Interface standards and specialized libraries (e.g. PETSc). Since the present work is part of a larger project involving several collaborators, special care has been taken in developing efficient coding strategies.
7

Multiscale, multiphysic modeling of the skeletal muscle during isometric contraction / Modélisation multi-physiques, multi-échelles du muscle squelettique en contraction isométrique

Carriou, Vincent 04 October 2017 (has links)
Les systèmes neuromusculaire et musculosquelettique sont des systèmes de systèmes complexes qui interagissent parfaitement entre eux afin de produire le mouvement. En y regardant de plus près, ce mouvement est la résultante d'une force musculaire créée à partir d'une activation du muscle par le système nerveux central. En parallèle de cette activité mécanique, le muscle produit aussi une activité électrique elle aussi contrôlée par la même activation. Cette activité électrique peut être mesurée à la surface de la peau à l'aide d'électrode, ce signal enregistré par l'électrode se nomme le signal Électromyogramme de surface (sEMG). Comprendre comment ces résultats de l'activation du muscle sont générés est primordial en biomécanique ou pour des applications cliniques. Évaluer et quantifier ces interactions intervenant durant la contraction musculaire est difficile et complexe à étudier dans des conditions expérimentales. Par conséquent, il est nécessaire de développer un moyen pour pouvoir décrire et estimer ces interactions. Dans la littérature de la bioingénierie, plusieurs modèles de génération de signaux sEMG et de force ont été publiés. Ces modèles sont principalement utilisés pour décrire une partie des résultats de la contraction musculaire. Ces modèles souffrent de plusieurs limites telles que le manque de réalisme physiologique, la personnalisation des paramètres, ou la représentativité lorsqu'un muscle complet est considéré. Dans ce travail de thèse, nous nous proposons de développer un modèle biofidèle, personnalisable et rapide décrivant l'activité électrique et mécanique du muscle en contraction isométrique. Pour se faire, nous proposons d'abord un modèle décrivant l'activité électrique du muscle à la surface de la peau. Cette activité électrique sera commandé par une commande volontaire venant du système nerveux périphérique, qui va activer les fibres musculaires qui vont alors dépolariser leur membrane. Cette dépolarisation sera alors filtrée par le volume conducteur afin d'obtenir l'activité électrique à la surface de la peau. Une fois cette activité obtenue, le système d'enregistrement décrivant une grille d'électrode à haute densité (HD-sEMG) est modélisée à la surface de la peau afin d'obtenir les signaux sEMG à partir d'une intégration surfacique sous le domaine de l'électrode. Dans ce modèle de génération de l'activité électrique, le membre est considéré cylindrique et multi couches avec la considération des tissus musculaire, adipeux et la peau. Par la suite, nous proposons un modèle mécanique du muscle décrit à l'échelle de l'Unité Motrice (UM). L'ensemble des résultats mécaniques de la contraction musculaire (force, raideur et déformation) sont déterminées à partir de la même commande excitatrice du système nerveux périphérique. Ce modèle est basé sur le modèle de coulissement des filaments d'actine-myosine proposé par Huxley que l'on modélise à l'échelle UM en utilisant la théorie des moments utilisée par Zahalak. Ce modèle mécanique est validé avec un profil de force enregistré sur un sujet paraplégique avec un implant de stimulation neurale. Finalement, nous proposons aussi trois applications des modèles proposés afin d'illustrer leurs fiabilités ainsi que leurs utilité. Tout d'abord une analyse de sensibilité globale des paramètres de la grille HDsEMG est présentée. Puis, nous présenterons un travail fait en collaboration avec une autre doctorante une nouvelle étude plus précise sur la modélisation de la relation HDsEMG/force en personnalisant les paramètres afin de mimer au mieux le comportement du Biceps Brachii. Pour conclure, nous proposons un dernier modèle quasi­ dynamique décrivant l'activité électro-mécanique du muscle en contraction isométrique. Ce modèle déformable va actualiser l'anatomie cylindrique du membre sous une hypothèse isovolumique du muscle. / The neuromuscular and musculoskeletal systems are complex System of Systems (SoS) that perfectly interact to provide motion. From this interaction, muscular force is generated from the muscle activation commanded by the Central Nervous System (CNS) that pilots joint motion. In parallel an electrical activity of the muscle is generated driven by the same command of the CNS. This electrical activity can be measured at the skin surface using electrodes, namely the surface electromyogram (sEMG). The knowledge of how these muscle out comes are generated is highly important in biomechanical and clinical applications. Evaluating and quantifying the interactions arising during the muscle activation are hard and complex to investigate in experimental conditions. Therefore, it is necessary to develop a way to describe and estimate it. In the bioengineering literature, several models of the sEMG and the force generation are provided. They are principally used to describe subparts of themuscular outcomes. These models suffer from several important limitations such lacks of physiological realism, personalization, and representability when a complete muscle is considered. In this work, we propose to construct bioreliable, personalized and fast models describing electrical and mechanical activities of the muscle during contraction. For this purpose, we first propose a model describing the electrical activity at the skin surface of the muscle where this electrical activity is determined from a voluntary command of the Peripheral Nervous System (PNS), activating the muscle fibers that generate a depolarization of their membrane that is filtered by the limbvolume. Once this electrical activity is computed, the recording system, i.e. the High Density sEMG (HD-sEMG) grid is define over the skin where the sEMG signal is determined as a numerical integration of the electrical activity under the electrode area. In this model, the limb is considered as a multilayered cylinder where muscle, adipose and skin tissues are described. Therefore, we propose a mechanical model described at the Motor Unit (MU) scale. The mechanical outcomes (muscle force, stiffness and deformation) are determined from the same voluntary command of the PNS, and is based on the Huxley sliding filaments model upscale at the MU scale using the distribution-moment theory proposed by Zahalak. This model is validated with force profile recorded from a subject implanted with an electrical stimulation device. Finally, we proposed three applications of the proposed models to illustrate their reliability and usefulness. A global sensitivity analysis of the statistics computed over the sEMG signals according to variation of the HD-sEMG electrode grid is performed. Then, we proposed in collaboration a new HDsEMG/force relationship, using personalized simulated data of the Biceps Brachii from the electrical model and a Twitch based model to estimate a specific force profile corresponding to a specific sEMG sensor network and muscle configuration. To conclude, a deformableelectro-mechanicalmodelcouplingthetwoproposedmodelsisproposed. This deformable model updates the limb cylinder anatomy considering isovolumic assumption and respecting incompressible property of the muscle.
8

Ein Beitrag zur optimalen Betriebsführung hybrider Energiesysteme

Schwarz, Sebastian 20 January 2022 (has links)
Die Dissertation liefert einen Beitrag zur Modellierung und optimalen Ansteuerung von vernetzten hybriden Energiesystemen. Die Arbeit beschreibt die Entwicklung einer modellprädiktiven Regelung (MPC) für konkrete Energiesysteme. Dafür wird eine Betrachtung zu berücksichtigender wirtschaftlicher und technischer Rahmenbedingungen vorgenommen, die zur Formulierung notwendiger Nebenbedingungen für die MPC genutzt wird. Für den Umgang mit dem ansteigenden Rechenbedarf der MPC bei steigender Systemzahl wird ein alternativer Ansatz auf Basis eines auktionsbasierten Algorithmus vorgestellt. Die Modellierung der Energiesysteme wird ausgehend von einer bestehenden Laboranlage vorgenommen. Die Erprobung der vorgestellten Ansätze erfolgt in einer Simulationsumgebung, die die Untersuchung verschiedener Szenarien erlaubt. Im Rahmen der Simulationsszenarien mit unterschiedlicher Systemzahl und Zusammensetzung der Energie-systeme wird eine Sensibilitätsanalyse der vorgestellten MPC vorgenommen. Die Interpretation der Ergebnisse erfolgt auf Basis numerischer und empirischer Bewertungskriterien.
9

Model Order Reduction in Structural Mechanics: Coupling the Rigid and Elastic Multi Body Dynamics

Koutsovasilis, Panagiotis 21 September 2009 (has links)
Gegenstand dieser Arbeit ist die Forschungsdisziplin, welche in der Strukturmechanik als Modellordnungsreduktion bekannt ist. Im Mittelpunkt stehen Kopplungsprozesse von starren und elastischen Mehrkörpersystemen - sowohl in theoretischer Hinsicht als auch bezüglich der praktischen Realisation im Rahmen des Finite-Elemente-Programms ANSYS und des Mehrkörpersimulationsprogramms SIMPACK. Eine Vielfalt von strukturerhaltendenMOR-Methoden wurde zum Zwecke des Überblicks dargestellt. Darüber hinaus findet sich eine Kategorisierungsmethodik in Hinsicht auf den später beschriebenen FEM-MKS-Kopplungsprozess. Die Effizienz der MOR-Methoden wird sowohl hinsichtlich der Qualität der ROM als auch bezogen auf die hierfür benötigte Rechenzeit bemessen. Aus diesem Grunde wurden etliche MOR Schemata dargelegt, mit dem Ziel, den Effizienzfaktor während der Berechnung eines ROMs zu maximieren, das heißt maximale Qualität und minimale Rechenzeit zu erzielen. Die Validierung der dynamischen ROM-Eigenschaften basiert auf der Anwendung der sogenannten Modellkorrelationskriterien. Dies wurde an vier Anwendungsbeispielen aus dem Feld der Strukturmechanik getestet: der 3D-Balkenstruktur, der UIC60-Schiene, dem Pleuel und der Kurbelwelle. Die Anwendung der diagonal perturbation-Methodik verbessert die Kondition der Steifigkeitsmatrix eines Modells, von beiden Arten von Lösungsprozeduren, d.h. direkte und iterative Verfahren, betroffen sind. Die dynamische Bewegung mechanischer MKS wird als ein Index-3-DAE-Systemformuliert und die Information über die elastischen Körper wird in Form der sogenannten Standard Input Datei in einen MKS-Code transferriert. Die Einführung des Back-projection-Ansatzes ermöglicht die weitere Verwendung bestimmter ROM-Typen, derren assoziierten physikalische Eigenschaften unangemessen definiert wurden. Zum Abschluss werden die theoretischen, modellierenden und numerischen Fortschritte der Arbeit resümiert und kombiniert im Sinne der Model Order Reduction Package Toolbox (MORPACK). Die Matlab-basierte MORPACK-Toolbox ermöglicht den FEM-MKS-Kopplungsprozess für die Verwendung von ANSYS und SIMPACK. Hierin sind ein Großteil der zuvor erläuterten Erweiterungen eingeschlossen. Mit Hilfe der zwei integrierten inneren MOR- und SID-Schnittstellen als auch der vier Anwendungsebenen wird der Import von freien oder eingespannten ROM in SIMPACK ermöglicht. / The research discipline referred to as the Model Order Reduction in structural mechanics is the topic of this Thesis. Special emphasis is given to the coupling process of rigid and elastic Multi Body Dynamics in terms of both the theoretical aspects and the practical realization within the environment of the commercial Finite Element and the Multi Body Systems software packages, ANSYS and SIMPACK respectively. In this regard, a variety of structure preserving Model Order Reduction methods is presented and a categorization methodology is provided in view of the later FEM-MBS coupling process. The algorithmic scheme of several of the MOR methods indicates the capability of generating qualitatively better Reduced Order Models than the standardized Guyan and Component Mode Synthesis approaches. The efficiency of a MOR method is measured in terms of both the quality of the ROM and the associated time required for the .computation Based on the application of the, so called, Model Correlation Criteria the efficiency of the MOR schemes is tested on four application examples originating from the area of structural mechanics, i.e. the 3D elastic solid bar structure, the UIC60 elastic rail, the elastic piston rod, and the elastic crankshaft model. Herewith, the superiority of alternative MOR schemes in comparison to Guyan or CMS methods is demonstrated in terms of the ROM?s quality and the computation time by the use of either the one-step or the two-step MOR algorithms. Numerous of the FE discretized structures suffer from the, so called, ill-conditioned properties regarding the associated stiffness matrix. On one hand, the direct solution of a MOR method might produce erroneous ROMs due to the associated truncation phenomenon and on the other hand, any kind of iterative approach suffers from vast computation times. The application of the diagonal perturbation methodology improves the condition properties of the model?s stiffness matrix and thus, both kinds of the aforementioned solution procedures are affected. The back-projection approach is introduced, which projects the ROM belonging to the Non physical subspace reduction-expansion methods category back onto the physical configuration space and thus, enabling its further usage in a MBS code, e.g. SIMPACK. Finally, the theoretical, modelling, and numerical advancements are combined in terms of the Model Order Reduction Package. The Matlab-based MORPACK toolbox enables the FEM-MBS coupling process for the ANSYS-SIMPACK utilization and herewith, several of the aforementioned enhancements are included. With the help of the two integrated inner interfaces, i.e. MOR and SID, as well as four application levels, the import into SIMPACK of alternatively free or fixed ROMs is enabled. The functionality of MORPACK is demonstrated based on two application examples, namely, the 3D elastic solid bar and the UIC60 elastic rail, the dynamic properties of which are validated prior to their import into SIMPACK.

Page generated in 0.1137 seconds