Spelling suggestions: "subject:"coupling state"" "subject:"doupling state""
1 |
Estudo da dependência dos parâmetros de identificação do meandro do vento com o acoplamento na camada limite atmosférica noturnaSchuster, Cristiano Henrique 23 February 2018 (has links)
Submitted by Marlucy Farias Medeiros (marlucy.farias@unipampa.edu.br) on 2018-10-05T16:46:40Z
No. of bitstreams: 1
Cristiano Henrique Schuster 2018.pdf: 4202405 bytes, checksum: 730f564dd132126eb49b0f1d88a6ed54 (MD5) / Approved for entry into archive by Dayse Pestana (dayse.pestana@unipampa.edu.br) on 2018-10-08T12:10:09Z (GMT) No. of bitstreams: 1
Cristiano Henrique Schuster 2018.pdf: 4202405 bytes, checksum: 730f564dd132126eb49b0f1d88a6ed54 (MD5) / Made available in DSpace on 2018-10-08T12:10:10Z (GMT). No. of bitstreams: 1
Cristiano Henrique Schuster 2018.pdf: 4202405 bytes, checksum: 730f564dd132126eb49b0f1d88a6ed54 (MD5)
Previous issue date: 2018-02-23 / A camada limite estável (CLE) começa a se desenvolver logo após o ocaso, quando a radiação de onda curta proveniente do Sol cessa e a superfície terrestre para de aquecer, nessas condições, devido a grande perda radiativa da superfície terrestre, a turbulência pode ter sua intensidade reduzida em várias ordens de grandeza, em um regime com estas características os níveis verticais estão energicamente desacoplados. Durante uma mesma noite, pode ocorrer alternância entre intervalos em que os níveis verticais estão energicamente desacoplados e momentos em que existe grande mistura turbulenta, a transição entre esses dois estados ocorre em um valor específico da velocidade média do vento, conhecida como velocidade de conexão. Em regimes de baixas turbulência, que é uma característica de um estado de desacoplamento enérgico vertical, o escoamento próximo à superfície passa a ser governado pro fenômenos de maiores escalas, como por exemplo escalas de submeso, dentre os quais pode-se citar o fenômeno de meandro das componentes horizontais do vento, que é caracterizado pela oscilação da direção horizontal do vento. O meandro do ventos exerce papel fundamental na difusão de escalares, além disso, a maioria dos modelos de dispersão falham em representar a influência do meandro, principalmente pelo fato de que o meandro dos ventos ainda não é totalmente entendido e caracterizado, destacando assim a relevância deste trabalho, cujo tema de relaciona a dependência dos parâmetros de identificação do meandro do vento com o acoplamento do escoamento na camada limite atmosférica noturna e tem objetivo relacionar o estado de acoplamento atmosférico com a ocorrência de meandro dos ventos, utilizando a velocidade necessária para o acoplamento (velocidade de conexão) como critério inicial para a identificação do meandro dos ventos. Para tal, dados do experimento Fluxes Over Snow-covered Surfaces II (FLOSSII) serão submetidos a dois métodos para a identificação de parâmetros característicos de meandro, sendo o primeiro o ajuste da autocorrelação dos dados à Função de Autocorrelação (ACF) através do parâmetro de loop (m) e o período do meandro (T*) e o segundo a Transformada de Hilbert-Huang (HHT) utilizando o espectro marginal para determinação do período do meandro (T*). Com os parâmetros característicos de meandro será realizada uma análise estatística utilizando-se o critério clássico de vento fraco (Ū > 1,5 ms-1 ) e a velocidade de conexão (Ūcoup) para encontrar intervalos de um hora em que existe a possibilidade de ocorrência de meandro. Comparando os dois critérios, as análises realizadas mostram que o critério de Ūcoup encontrou aproximadamente 4 vezes mais intervalos, mantendo a mesma porcentagem de casos em que o parâmetro de loop é maior que um, mostrando-se um critério mais adequado para encontrar casos de possível meandro, principalmente para os níveis de medições mais altos. Em sítios que possuem torres de medição com níveis altos i critério de Ū < 1,5 ms-1 pode restringir a maioria dos casos, enquanto que a velocidade de conexão faz a separação natural dos regimes de escoamento. Permitindo assim, que todos os possíveis casos sejam analisados. / The stable boundary layer (CLE) begins to develop after the sunset, when short-wave radiation from the Sun ceases and the Earth’s surface ceases to heat, in these conditions, due to the great radioactive loss of the earth’s surface, turbulence intensity is reduced by several orders of magnitude, in a regime with these characteristics the vertical levels are energetically decoupled. During one night, alternations can occur between intervals in which vertical levels are energetically decoupled and times when there is a large turbulent mixture, the transition between these two states occurs at a specific value of wind speed. In low turbulence regimes, which is a characteristic of a state of vertical energy decoupling, the flow near the surface is governed by phenomena of larger scales, such as submeso scales, among which we can mention the phenomenon of meander of the horizontal components of the wind, which is characterized by oscillation of the horizontal direction of the wind. The meander of the winds plays a fundamental role in the diffusion of scalars cite anfossi2005, in addition, most dispersion models fail to represent the influence of the meander, mainly because the meander of the winds is not yet fully understood and characterized, highlighting the relevance of this work, whose research theme is “Study of the dependence of the wind meander identification parameters with the coupling in the atmospheric nocturnal boundary layer” and has as objective to relate the state of atmospheric coupling with the occurrence of winds meander, using the velocity required for the coupling as the initial criterion for wind meander identification. For this, data from the experiment Fluxes Over Snow-covered Surfaces II (FLOSSII) will be submitted to two methods for the identification of meander characteristic parameters, the first being the adjustment of the autocorrelation of the data to the Autocorrelation Function (ACF) through of the loop parameter (m) and the meander period (T*) and the second the Hilbert-Huang Transform (HHT) using the marginal spectrum for meander period determination (T*). With the characteristic meander parameters, a statistical analysis will be performed using the classical criterion of weak wind (Ū > 1,5 ms-1 ) and the coupling speed (Ūcoup) to find one hour intervals in which there is the possibility of meander occurrence. Comparing the two criteria, the analyses performed show that the Ūcoup criterion found approximately 4 times more intervals, maintaining the same percentage of cases of possible meander, especially for the higher measurement levels. In sites that have high-level measurement towers, the criterion of Ū < 1,5 ms-1 may restrict most cases, while the coupling speed causes the natural separation of flow regimes. Thus allowing all possible cases to be analysed.
|
2 |
Caminhos para a complexidade na camada limite atmosférica noturna / Routes to complexity on the nocturnal atmospheric boundary layerCosta, Felipe Denardin 09 December 2011 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The focus of the present thesis is the nocturnal atmospheric boundary layer, under very stable conditions.
In such situation, the turbulence production by the vertical wind shear may have similar magnitude to
the total turbulence destruction by the thermal stratification and molecular dissipation terms. Besides being
in near balance, the turbulence production and destruction are, each of them, functions of the turbulence
intensity itself. This condition causes situations on which the system behaves on a manner different than that
expected from each of its parts individually. Such processes are characterized, in the present study, as paths
to complexity, and are analyzed separately in the different chapters that compose the thesis. In chapter 2, the
coupling state between the surface and the top of the stable boundary layer (SBL) is investigated using four
different schemes to represent the turbulent exchange. An idealized SBL is assumed, with fixed wind speed
and temperature at its top. The formulations compared are those that solve a prognostic equation for turbulent
kinetic energy (TKE) and those that directly prescribe turbulence intensity as a function of atmospheric
stability. The formulation influence on the coupling state is analyzed and it is concluded that, in general, the
simple TKE formulation has a better response, although it also tends to overestimate turbulent mixing. The
consequences are discussed. In chapter 3, a simplified new model for the exchange between the surface
and the atmosphere under stable conditions is proposed. Its main difference from previous works consists in
the fact that the turbulent intensity is determined by a prognostic equation for turbulent kinetic energy (TKE),
rather than by using stability functions that arbitrarily relate it to atmospheric stability. Its main novelty is
the fact that, when multiple atmospheric levels are considered, it leads to complex solutions, characterizing
the occurrence of the phenomenon known as global intermittency. The vertical structure of the intermittent
events is analyzed, and it shown that they are generated at the surface by a local shear increase above
a threshold, propagating upward through the turbulence transfer term in the TKE equation. It is proposed
that such events constitute a natural characteristic of the disconnected SBL, which occurs along with low
large-scale winds and clear skies. Chapter 4 is devoted to the purpose of showing that the use of stability
functions that represent the turbulence intensity as its average dependence on atmospheric stability reduces
the number of degrees of freedom of the system, precluding it from reaching complex solutions. Finally, in
chapter 5, a detailed system dynamics analysis is applied to the model proposed in chapter 3, with the aim
of identifying whether it is or not chaotic. It is shown that the system bifurcates as the wind speed at the
SBL top increases, reaching period 3 for a range of situations, a sufficient condition for chaos existence.
Furthermore, positive Lyapunov exponents are found, again confirming the chaotic character of the system.
It is shown that the complexity arises from the nonlinear interactions between the different vertical levels
considered, through the vertical turbulence transport terms. / O foco da presente tese é a camada limite atmosférica noturna, sob condições estáveis. Nesta situação,
a produção de turbulência pelo cisalhamento vertical do vento pode ter magnitude similar à destruição
total de turbulência devido à estratificação térmica e a dissipação molecular. Além de serem próximos no balanço,
a produção de turbulência e a destruição são, cada um deles, funções da intensidade turbulenta. Esta
condição causa situações nas quais o sistema se comporta de maneira diferente do que o esperado para
cada uma de suas partes individualmente. Tais processos são caracterizados, no presente estudo, como
caminhos para a complexidade, e são analisados separadamente em diferentes capítulos que compôem a
tese. No capítulo 2, o estado de acoplamento entre a superfície e o topo da camada limite estável (CLE) é
investigado usando 4 diferentes esquemas para representar a intensidade turbulenta. Uma CLE idealizada
é assumida, com velocidade do vento e temperatura fixas no seu topo. As formulações comparadas são
aquelas que resolvem uma equação prognóstica para a energia cinética turbulenta (ECT) e as que prescrevem
diretamente a intensidade turbulenta como uma função da estabilidade atmosférica. A influência da
formulação no estado de acoplamento é analisada e é concluído que, em geral, a formulação simples de
ECT tem a melhor resposta, embora esta tenda a superestimar a mistura turbulenta. As consequências são
discutidas. No capítulo 3, um novo modelo simplificado para interação entre a superfície e a atmosfera em
condições estáveis é proposto. A principal diferença com relação a estudos anteriores, consiste no fato que
a intensidade turbulenta é determinada por uma equação prognóstica para a ECT, ao invés de usar funções
de estabilidade que são arbitráriamente relacionadas com a estabilidade atmosférica. A principal novidade
é o fato que, quando multipos níveis atmosféricos são considerados, este apresenta soluções complexas,
caracterizando a ocorrência do fenômeno conhecido como intermitência global. A estrutura vertical dos
eventos intermitentes é analisada, e esta mostra que os eventos são gerados na superfície pelo aumento
local do cisalhamento acima de uma fronteira, propagando-se para cima através do termo de transporte
turbulento na equação da ECT. É proposto que tais eventos constituam uma característica natural da CLE
desconectada, a qual ocorre em condições de ventos de grande escala fracos e com céu claro. O capítulo
4 tem como propósito mostrar que o uso de funções de estabilidade que representam a intensidade da
turbulência como a dependência média desta com a estabilidade atmosférica, reduz os graus de liberdade
do sistema, assim evitando que este encontre soluções complexas. Finalmente, no capítulo 5, uma análise
dinâmica detalhada é aplicada no modelo proposto no capítulo 3, com meta de identificar se este é caótico
ou não. É mostrado que as soluções do sistema bifurcam-se com o aumento da velocidade do vento no
topo da CLE, encontrando soluções com período 3 para um intervalo de situações, uma condição suficiente
para a existência de caos. Além disso, expoentes de Lyapunov positivos são encontrados, novamente
confirmando o caráter caótico do sistema. É mostrado que a complexidade surge através de interações
não lineares entre os diferentes níveis verticais considerados, através do termo de transporte vertical de
turbulência.
|
Page generated in 0.0838 seconds