• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Autour du programme de Calabi, méthodes de recollement / Calabi's program and gluing methods

Vernier, Caroline 24 October 2018 (has links)
On étudie l'existence de métrique à courbure scalaire hermitienne constante sur des variétés presque-Kähler obtenues par lissage d'orbifolds Kähler à courbure scalaire riemannienne constante et à singularités A1. On démontre que si un tel orbifold n'a pas de champs de vecteurs holomorphes (non triviaux) alors un lissage presque Kähler (Mє, ωє) admet une structure presque-Kähler à courbure scalaire hermitienne constante. De plus, on démontre que pour є > O assez petit, les (Mє, ωє) sont toutes symplectiquement équivalentes à une variété symplectique fixée (M , ω) qui possède un cycle évanescent admettant un représentant Hamiltonien stationnaire pour la structure presque complexe associée. / We study the existence of metrics of constant Hermitian scalar curvature on almost-Kähler manifolds obtained as smoothings of a constant scalar curvature Kähler orbifold, with A1 singularities. More precisely, given such an orbifold that does not admit nontrivial holomorphie vector fields, we show that an almost-Kähler smoothing (Mє, ωє) admits an almost-Kähler structure (Jє, gє) of constant Hermitian curvature. Moreover, we show that for є > O small enough, the (Mє, ωє) are all symplectically equivalent to a fixed symplectic manifold (M , ω) in which there is a surface S homologous to a 2-sphere, such that [S] is a vanishing cycle that admits a representant that is Hamiltonian stationary for gє .

Page generated in 0.0482 seconds