Spelling suggestions: "subject:"covalent bonding"" "subject:"kovalent bonding""
1 |
IMMOBILIZATION OF MERCURY AND ARSENIC THROUGH COVALENT THIOLATE BONDING FOR THE PURPOSE OF ENVIRONMENTAL REMEDIATIONBlue, Lisa Y. 01 January 2010 (has links)
Mercury and arsenic are widespread contaminants in aqueous environments throughout the world. The elements arise from multiple sources including mercury from coal-fired power plants and wells placed in natural geological deposits of arseniccontaining minerals. Both elements have significant negative health impacts on humans as they are cumulative toxins that bind to the sulfhydryl groups in proteins, disrupting many biological functions. There are currently no effective, economical techniques for removing either mercury or arsenic from aqueous sources. This thesis will demonstrate a superior removal method for both elements by formation of covalent bonds with the sulfur atoms in N,N’-Bis(2-mercaptoethyl)isophthalamide (commonly called “B9”). That B9 can precipitate both elements from water is unusual since aqueous mercury exists primarily as a metal(II) dication while aqueous arsenic exists as As(III) and As(V) oxyanions.
|
2 |
The Use of Reversible Covalent Bonding and Induced Intramolecularity to Achieve Selectivity and Rate Acceleration in Organic ReactionsWorthy, Amanda D. January 2013 (has links)
Thesis advisor: Kian L. Tan / Chapter 1. Catalytic directing group, I, which was designed with the ability to form a reversible covalent bond with a substrate and bind a metal, was shown to direct the hydroformylation of allylic amines. The efficient regioselective hydroformylation of a variety of 1,2-disubstituted allylic sulfonamides to form β-amino-aldehydes under mild conditions has been shown. Chapter 2. Building off of the successful application of I, enantioenriched catalytic directing group, II, was designed and synthesized. It retained the essential features to direct hydroformylation to obtain good regioselectivity while also providing a chiral environment to induce absolute stereocontrol. Under mild conditions, a variety of disubstituted olefins react to give good yields and excellent enantioselectivites. Thus, the first enantioselective reaction performed with a catalytic directing group was demonstrated. Chapter 3. A new set of organocatalysts was developed that benefits from reversible covalent bonding and induced intramolecularity. The desymmetrization of meso-1,2-diols was accomplished using organocatalyst III, which was synthesized easily and cheaply. Experimental results indicate that the selectivity and increased reactivity are a result of the ability of III to pre-organize the substrate through a reversible, covalent bond. A variety of cyclic and acylic substrates were shown to react efficiently with good enantioselectivities under mild conditions. The catalyst's ability to functionalize cis-1,2-diols selectively indicated it might be successfully applied to site selective catalysis. Thus, the selective functionalization of a secondary alcohol in the presence of a primary alcohol was developed using a combination of binding selectivity and stereoselectivity. The (S)-enantiomer forms the secondary functionalized product while the (R)-enantiomer forms the primary functionalized product with high selectivity. As the enantiomers preferentially form different functionalized products, a regiodivergent reaction on a racemic mixture resulted giving two valuable enriched products. / Thesis (PhD) — Boston College, 2013. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
3 |
Development of Granulated Adsorbent for Clean-up of Water contaminated by CesiumAlorkpa, Esther 01 May 2019 (has links) (PDF)
A study was conducted on sol-gel synthesis of an adsorbent (phosphotungstic acid embedded in silica gel, H-PTA/SiO2) of radioactive cesium. A novelty of this work is covalent bonding of PTA to the surface of solid support that prevents leaching from the surface of the material. The sample was granulated with a binder, aluminium oxide (γ-Al2O3). Solid-state NMR and FT-IR spectroscopy were used to confirm the presence of Keggin units of PTA in the bound materials. Thermal analysis of H-PTA/SiO2 - γ-Al2O3 (50 %) showed that the water content in the bound material was appreciably lower than in the pure adsorbent. Quantitative determination of surface acidity of porous materials is an important analytical problem in characterization of the adsorbents. This problem was solved by reversed titration after saturation of the materials by anhydrous solution of pyridine. Batch and column adsorption tests showed that the adsorbent demonstrated high adsorption capacities towards cesium.
|
Page generated in 0.1053 seconds